2 Regional Workshops Raw Data The information contained in the follow tables is the unprocessed data recorded during each of the workshop sessions and provided as a handout to the attendees at the conclusion of each workshop. # Caribbean Workshop | Worksheet A: Identify | Ocean Explora | tion Information Ne | eds/Gaps | | | |---|---|---|--|---|-------| | Emphasis Area: Ocea | | | | | | | Information Need/Gap | What | Why | Where | Technologies | Votes | | Understanding of relationship
between hydrates and cold
seeps/vents and sediment flows and
biota (including microbes) and brine
pools | discover new species
and processes;
understand relationships | potential new bioengineering
products; serve as areas of
production "oases"; ocean
resource management (ex.
protection of the communities) | hydrate stability zone; 300m -
<~3km; northern Gulf;
Campeche Banks and Bay;
commercial tracts | ROV; AUV; sub; sampling; video;
moored application | 13 | | Location and understand gas
hydrates | determination of
location and volume of
hydrate resources;
classification; chemistry | energy source; impact on
environment (climate, carbon
cycle); geohazard/sea floor
stability | 300m-3km (maybe more) depths;
emphasize below 1000m (E.
Texas to W. Florida); EEZ;
outcroppings; arctic | acoustic mapping; ROVs; sampling
systems; video; sub; AUVs; sensors
for gas analysis | 12 | | Understand deep water impacts
from significant weather systems
(ex. Hurricanes) | characterize ocean under
severe weather and
ocean bottom in real-
time | learn of impact on habitats,
ecosystems, geomorphology;
has not been observed before;
benthic recovery; determine if
relationship between tracks and
water | tropical storm tracks in Gulf | AUV; fixed sensors including
hydrophones; sensor arrays | 11 | | Characterize deep MPAs (including deep reefs) | baseline knowledge of
existing conditions | ensure knowledge of the
constituents that need
protection; PSBL Biotech
applications | existing MPAs (3 W. FL shelf);
Flower Garden Banks | sub/ROV; deep diving capabilities;
manned observatory (human
habitat); fixed sensors; AUV; good
video | 10 | | Interaction between loop current
and related circulation features &
fisheries | impact on ecosystems
and habitats | lack of knowledge related to
fish populations; correlation
with boundary/events | Yucatan Channel; shelf break
along northern & eastern Gulf | fixed & vessel-based ADCPs;
tomography; "tailored" AUV;
ROVs, cameras, and sampling
tools; sensors for ID nutrients;
drifters; profilant floats | 9 | | Understanding of Gulf currents on offshore structure | impact on engineering
and DESIGN;
partnership with
platforms | ability to predict loop currents;
safety and \$\$; contaminant
control; national security; better
understanding | northern Gulf; energy exploration areas | instrumented platform; deployed
and fixed current meters; drifters;
profilant floats | 6 | | Identify areas that are candidate MPAs | baseline knowledge of
existing conditions; ID
biota that needs
protection; habitat
characterization | conservation; impact on
surrounding habitat;
management and policy | Green Canyon; Mississippi
Canyon; Dasoto Canyon; PSBL
Yucatan Channel | sub/ROV; deep diving capabilities;
manned observatory (human
habitat); fixed sensors; AUV; good
video; acoustic mapping
(single/multibeam) | 6 | | Interaction between loop current, related circulation, and hydrate stability | relationship between
ocean properties and
hydrates/beds | geohazards understanding
(safety) | loop current and depth <3km;
commercial lease tracts | fixed & vessel-based ADCPs;
tomography; "tailored" AUV;
ROVs, cameras, and sampling
tools; sensors for ID nutrients;
drifters; profilant floats | 5 | | Understanding of distribution and
process details of fluid and gas
expulsions, carbonate formations,
and seismic activity | knowledge of bottom
boundary dynamics | tipper for hydrocarbons (energy
resources); fish habitat;
geohazards; climate/carbon
cycle | slope waters <3km; E. Texas to
W FL slope | seisometers; ROVs/subs; video; sampling | 5 | | Location and processes near sites of potential threat to the environment | wrecks; marine debris;
dump sites; abandoned
platforms | pollution impact; long-term
anthro. impacts; safe ty;
ecosystem health | suspected debris sites; dump
zones; wrecks | acoustic mapping;
single/multibeam; sub/ROVs;
AWOIS; video; samples | 5 | | Knowledge of sub-bottom characteristics | morphology;
composition; dynamics | characterize acoustic
backscatter; identifier of hydrate
deposits and industry zones | slope waters <3km | acoustic sounders (high resolution, seismic); vertical arrays; AUVs | 4 | | Understanding distribution and
migration pattern of marine
mammals | response to
anthropogenic impacts
(noise, other pollution) | conservation; public interest | migration routes; commercial
lease tracts (1km contour and
loop current events) | acoustic tags; fixed hydrophones; sensor arrays | 3 | | Understanding of loop current
related currents relationship to HAB
formation and other species that are
not normally seen | discover mechanisms of
transport that leads to
formation and
distribution | human health issue; economics;
recreation industry; impact
industry (shrimp, oyster, and
fishing) | west FL shelf; Yucatan Straits
(source); E. Texas; northern Gulf | remote sensing; towed arrays;
ROV/AUVs; sampling; drifters
(SVP); HDTV | 2 | | Characterize canyon processes | sediment fluxes;
turbidity flow; erosion;
chemistry; upwelling | understanding distribution of
sediments; knowledge of
depositional cycles; impacts on
marine mammals and pelagic
communities; nutrient
production | Mississippi Canyon; Desoto
Canyon; Green Canyon | ROVs/AUVs/subs; video; sampling | 2 | | Location and dynamics of archaeological sites of historical significance | wrecks; submerged
structures | preservation; creation of habitat;
interests the public; maritime
heritage | candidate sites resulting from prior surveys | acoustic mapping;
single/multibeam; sub/ROVs;
AWOIS; video; samples | 2 | | Understand impacts of Mississippi
River outflow on habitats,
ecosystems (and secondary fresh
water input) | Determine river
influence on Gulf
systems; bio/geo/chem;
frontal zones | Regulatory oversight of runoff
quality; remediation; impact on
fisheries; bottom health; flux of
nutrients | Flower Garden Banks to FL
Keys | sensor arrays; fixed sensors; AUVs; remote sensing; ROVs | 1 | | Location of new mineral resource deposits | shell; sand | possible economic viability;
shoreline protection | EEZ | core samples; ROVs/AUVs | 1 | | Ability to generate energy from ocean renewable resources (currents, vents) | detailed baseline
knowledge of candidate
currents/locations | possible new energy resources | candidate bathymetry near loop
and related currents, vent
locations | instrumented platform; deployed
and fixed current meters; drifters;
profilant floats | | Emphasis Area: Ocean Dynamics and Interactions & Mapping (standard package = class 1 or 2 vessel; ROV/sub/AUV with video & sampling and high speed communications; acoustic mapping capability; precise positioning system) | Worksheet B: Iden | <u> </u> | | | Enabling | Partners / | |--|-----------------------------------|--|---------------------|--|--------------------------------| | Information Need -
Approaches | Description | Key Benefits | Feasibility | Technologies | Available Assets | | Understanding of relationship | | | | | | | between hydrates and cold | | | | | | | seeps/vents and sediment
flows and biota (including | | | | | | | microbes) and brine pools; | | | | | | | Location and understand gas | | | | | | | hydrates; Fluid gas expulsions | | | | | | | 1 - vessel (standard package) | | biotech products; industry | mod (\$\$) | 3km capable ROV; synthetic aperture | USN; Mexico; | | + high resolution seismic | | gains (includes safety); | | sonar; laser line scanner; pressurized | Areté; Univ of | | | | ocean management;
science: education: | | hydrate cores; optical spectrometers; | Miss; USM;
Universities; | | | | homeland security; fishing | | mass spectrometers; HDTV; heat flow sensors; resistivity sensors; reusable | NURC: | | | | industry | | biosensors | LUMCOM; | | | | | | | NDBC; Canada; | | 2 - fixed sensors | | | mod (\$ for comms) | vertical arrays; resistivity sensors; | | | | | | | sea-floor probes; geophones; time | | | | | | | lapse imaging; AUV "garage" | | | 3 - existing data mining | data bases | | mod-low | data recovery technologies | NAVO; NRL; | | | | | (accessibility) | | energy
companies | | 4 - remote sensing | surface expression | | mod | SAR | companics | | y | | | | | | | Interaction between loop |
physical water | | | | | | current, related circulation, | impacts | | | | | | fisheries, habitats, offshore | | | | | | | structures, HAB formation, and | | | | | | | hydrate stability 1 - remote sensing | satellite, aircraft | fisheries management (incl | mod | hyperspectral sensors | NWS: | | 1 - Terriote serising | satellite, all'Clart | shrimp & oysters); better | mod | Tryperspectral serisors | Universities; | | | | weather forecasting; | | | NURC; USN; | | | | 3. | | | energy | | | | | | | industries | | 2 - vessel (standard package) | expedition to
locations/events | safety; economy; public interest; | high | ROVs/AUVs (mobility); HDTV | | | 3 - fixed sensors & arrays | locations/ cvcints | containment control | high | ADCPs & CTDs & hydrophones; | | | | | (structures); | 3 | vertical array sensors; data link | | | 4 - data mining | existing data bases | national security; human
health: | mod | | | | 5 - drifting sensors | | science; education; | high | data link; ADCPs & CTDs & | | | 5 unting sensors | | understand & predict | i iigi i | hydrophones; vertical array sensors; | | | | | geohazard events | | data link | | | | | | | | | | Characterize "deep" MPAs | | | | | | | (including deep reefs);
ID candidate MPAs; | | | | | | | Location & dynamics of | | | | | | | archaeological sites of | | | | | | | historical significance | | | | | | | 1 - vessel (standard package) | expedition | biotech products; | high | diving technologies; HDTV; synthetic | energy | | | | conservation; | | aperture sonar; laser line scanner | companies; | | | | management; | | | NURC; NMFS; | | | | | | | Universities;
USN | | 2 - data mining | data bases | education; science; | mod | data mining technologies | NIH; state | | 2 manned abo | | nublic offinity: !=f- f | low (# 9 -!-!-) | doon water concluit | gov'ts | | 3 - manned observatory | | public affinity; info for
enforcement | low (\$ & risk) | deep water capability | commercial
fisheries; sport | | | | | | | fishing | | 4 - fixed sensors and arrays | | | high (\$ for comms) | time lapse imagery; data link | | | Understanding impact of | | | | | | | Understanding impact of
significant weather | | | | | | | (hurricanes) on deep ocean | | | | | | | 1 - AUV | not deployed from | | mod | video; acoustic mapping; | NWS (HRD); | | • | surface vessel | | | hydrophones; chem/bio sensors; AUV | USN; NMS; | | | | | | range capability; AUV stationed | NMFS; energy | | | | | | underwater - "wake up" | companies; | | | ı | i . | | • | insur ance | | | | | | Enabling | Partners / | |--|-------------------------------|--|-------------------------------------|--|---| | Information Need -
Approaches | Description | Key Benefits | Feasibility | Technologies | Available Assets | | 2 - fixed sensors | data buoys; bottom
sensors | risk assessment safety;
ability to assess impact on
habitats and ecosystems;
education; science | high (with current
technologies) | time lapse imagery; video; sector
scan sonar; hydrophones; ADCP;
chemical sensors; acoustic biomass;
phosphorescence sensors; genomic
probe; optical spectrometer; nutrient
sensors; data link | | | 3 - drifting sensors | | | mod | vertical array (ADCP; CTD) | | | Location and processes near sites of potential threat to environment | | | | | | | 1 - vessel (standard package) | (esp. acoustic mapping) | conservation;
management; safety; lots
of public interest;
remediation | high | sampling (bio/chem/physical); coring; video; acoustic mapper; radiological sensor; networked AUVs | EPA; NMS; state
gov'ts; NOS
(HAZMAT);
media? | | 2 - data mining | data bases | policy; regulation;
enforcement; | mod | AWOIS | | | 3 - fixed sensors and arrays | (when location is
known) | | high | time lapse imagery; video; sector
scan sonar; hydrophones; ADCP;
chemical sensors; acoustic biomas s;
phosphorescence sensors; genomic
probe; optical spectrometer; nutrient
sensors; data link | | | Impact of Mississippi River
butflow and other secondary
fresh water sources on
nabitats, ecosystems | | | | | | | 1 - remote sensing | space-based; aircraft | coastal zone management; | mod | hyperspectral; ocean color | NMFS; NASA;
USN, NOS,
Universities; | | 2 - drifters | | fisheries management; | high | | commercial
fishing: | | 003 - vessel (standard
package) | | conservation; public interest; policy remediation; | high | physical sampling; hyperspectral;
video/HDTV; towed geo/chem/bio
sensors; mass spectrometers | sport fishing;
EPA; states;
NMS; USACE | | 4 - fixed sensors and arrays | | science; education | high | geo/chem/bio sensors; nutrient sensors | | | Emphasis Area: Observation and | 11 0 | | | | | |---|---|--|---|--|-------| | Information Need/Gap | What | Why | Where | Technologies | Votes | | 2. Mapping of the Gulf | bathymetry | not done in many areas;
slope is an important habitat,
resource management, use
bathymetry to find habitat
fish association - seasonality | slopes, shelf regions, western
Gulf off Texas coast - East
Breaks area, Eastern Gulf, all of
Western Florida, 4 reserves
closed to fishing - 2 in Tortugas
and 2 in West Florida,
Northwest Gulf; partner with
Mexico to map Yucatan | multibeam, subs for
groundtruthing, utilize
backscatter data | 1! | | 16. Mapping between known topographic features (goes with #1) | mapping, inventory and characterization | unknown regions | all over shelf | mapping technologies,
sampling, ROV's, subs,
sidescan, towed systems | : | | 17. Chemosynthetic
communities (subsurface - down
several km): oil seeps and vent
communities | inventory and
characterize, isoloated
ridge system, new
biota, larger
geographic context | unknown regions, new biota, explore why communities exist, what turns these areas on and off?, significant communities through evolutionary time, global importance, genetic links between regions | Cayman Trough - major area to
explore - lots of unexplored oil
seeps, Southern Gulf, Barbados,
Trinidad, West Africa - have
some taxonomic affinities to
those in Gulf of Mexico | multibeam, geophysical techniques, sampling techniques, satellite imaging, towed vehicles, subs, AUV's, look at new technologies | 10 | | 20. Cayman Trough | mapping, plume
prospecting, inventory
and characterize | significant potential for
hydrothermal activity (active
spreading center) and not
mapped, can do it in a short
amount of time | Cayman Trough just outside
Gulf | CTD's, multibeam | | | 3. Fluid and gas expulsion | map 3-D seizmic data,
high resolution data | ID chemosynthetic
communities, resource
management, what are the
controls on the fluid and gas
expulsion? | Continental slope, deep water,
shelf, Mexico, Cuba, Florida
Keys, Florida Gulf | subs and ROV's | | | 26. Rivers of warm, dense brine | heat flow
measurements,
mapping, origin,
effects | explore origin and effects,
Gulf is a major salt provence | Sigsbee Escarpment, Orca Basin | observations, mapping
technologies, CTD, acoustics | | | 5. Exploring the deep benthos
for biological communities | genomic mapping -
non-traditional,
cataloguing for
biotechnology | biotech application, genetic
makeup, resource
management | deep Gulf - start at around
200m | genetic technology, subs, box cores, trawls, trapping | | | 14. Genetic connectivity of Gulf ecosystems | biodiversity, genomic mapping | resource management,
marine bioconservation,
recruitment patterns, larval
dispersal and distribution,
levels of input/ geographic
contributions of recruits,
Flower Gardens northern
most reef system in Gulf | upstream and downstream of
productive fishery areas -
MPA's, Keys, Banks; major eddy
systems | genetic technology, plankton
tows, traditional sampling
techniques, ROV's and subs,
deep water collection | ! | | Distribution and status of
deep water corals | diversity, health,
size/class distribution,
taxonomy | Discover role in enhancing
local species diversity; deep
water fisheries habitat,
resource management | Lophilla Banks - deep coral
banks in outer continental shelf-
Biosca Knoll, Southern Gulf of
Mexico - Sigsbee Knoll and
Challenger Knoll | subs, Alvin or deep ROV | | | Charismatic megafauna
(whales, manta rays, sea turtles,
dolphins, whale sharks, etc) | location, distribution,
migrations patterns,
reproduction, general
life history questions,
genetics | not well studied, some
species are
endangered, use
of man-made platforms,
resource management,
outreach/education | Gulf shelf, specific topographic
features associated with them,
man-made platforms | tagging, satellite, imaging,
acoustic, hydroacoustic,
genetic technologies | | | 23. Lithoherms | map, identify and characterize, geology | Not studied, may find deep
corals on them, unexpected
discoveries | between Bahamas and Florida | ROV, towed vehicles, AUV's, subs, geophysical technology | : | | Time observation of
topographic areas; revisiting
topographic features that have
significant biological
communities | change in bathymetry,
time lapse data | access fish stocks, assessing
changes in habitat and
populations, species
composition, resource
management | Florida Gulf and Keys, Pinnacles
off MS/Alabama, Northwest
Gulf, Mexico | time lapse video to observe activity | | | Explore submerged historical
and cultural sites - Pleistocene
shoreline | Inventory and
characterize what's
there, record of sea
level change | Assess rate of change -
based on sea level change,
national heritage, how
humans and environmemnt
responded to sea level
change, resource
management | edge of Shelf, Bright Banks | sub-bottom profiler, SCUBA,
ROV's, subs, sidescan,
magnetometers | | | 21. Monitoring natural (biological and geological) and anthropogenic noise | effects of human
induced noises on
biota, natural noise | natural noise can be used as
a measurement of health -
can be used as a proxy for
measurement of animal
health | MS Delta where whales are located, human built platforms, protected regions, essential habitats | acoustic technologies, new technologies | | | 27. MS canyon river-like
structures at bottom | origin, effects, | Not studied, origin unknown,
inventory and characterize,
potential for unexpected
discoveries, Gulf
characterized as a brine
system - could be global
question | MS Canyon | subs, sampling techniques | | | Emphasis Area: Observation and
Information Need/Gap | What | Why | \//b~~~ | Tochnologica | Votes | |---|---|---|--|---|-------| | 18. Canyon systems | microbial | effects on adjacent | Where Orca Basins, smaller brine pools | Technologies innovative microbial | votes | | io. Canyon systems | communities,
geochemical | ecosystems, unknown
microbial communities | elsewhere, Gulf | techniques, sampling
techniques, chemical sensors,
point sampling with ROV's
and subs | | | 12. Shoreline erosion - Gulf of
Mexico | erosion rates, habitat
loss, sedimentation,
storm surge impacts | public concern, economics, protection from storm surge | Gulf of Mexico, TX, Alabama | remote sensing, aerial photo, satellite imagery, maps | | | 10. Hypoxia phenomenon | origin, effects | | Gulf of Mexico dead zone, look at all river mouths | collect standard oceanographic parameters | | | 11. Subsidence in LA | salt water intrusion,
habitat loss, impact,
invasive species,
impacts on
infrastructure | public concern, loss of wetlands and other habitats | coastal LA - most severe there | 3 | | | 7. Mid-water exploration | characterization of organisms | larval distributions,
taxonomy, little known of
mid-water regions,
charasmatic species,
resource management | Gulf, off mouth of MS river -
resident population of sperm
whales over 1,000m line so
there must be a resident
population of giant squid, Straits
of Yucatan and Straits of Florida -
Gulf connections | | | | 15. Slope stability studies | debri floats, gas,
slopes, faults, gas
hydrates, mud flows,
inventory and
characterization, date
features | oil and gas exploration and
production, habitat
modifying phenomenon | continental slope, Mobile West,
Florida escarpment, sigsbee | geotechnical, sidescan sonar,
dating techniques, sampling,
core samples, high resolution
geophysics, multibeam, sub-
bottom systems | | | 9. Turbid water coral communities | presence and
distribution,
morphology | emerging field of study,
resource management ,
genetic info, influence of
turbid water on benthos | Northern Gulf region, MS River region | food chain analysis, light
meters and other monitoring
equipment, water chemistry | | | 8. Zoogeography of offshore
man-made sturctures - oil and
gas structures | taxonomy, diversity,
distribution | little known, introduced species concerns, effects on pelagic communities (tuna question), biotech applications, resource management | Shelf and deep water, intertidal and subtidal structures | SCUBA, ROV, imaging,
standard sampling techniques
- collection, modeling | | | 25. Exotic invasive species | where do they come
from?, how did they
get here?, where are
they successful or not
successful?, impact,
taxonomy, genetics | economics, resource
management, ecological, can
be added on to other
projects | everywhere from coast to far
offshore regions | standard sampling, genetics, taxonomy, modeling | | | 22. Montserrat | hydrothermal activity | active volcano | Montserrat | | | | 24. Cross Gulf migratory birds | migratory birds -
songbirds, contribute
to database | not much known, contribute
to database, can use existing
platform structures, what
role does Gulf play in
transocean bird migration?,
can add bird studies to any
other study | | visual observations, radar | | | 28. Mega-furrows | origin, physical
characterization over
time, size, shape,
currents | recently identified in Gulf,
imact on currents, don't
know where sediment goes
from erosion | found between 5-7,000 feet -
base of the Sigsbee | high resolution bathymetry,
geotechnical technologies | | | 29. Neuston | identify and
characterize | very little information, may
be unique with amount of oil
naturally occurring in Gulf,
biotech applications,
pharmacological applications | sites of persistency of oil slicks,
Bush Hill - Northern Gulf | satellite, sampling | | | 13. Tropical cyclogenesis | air/sea interactions | hurricanes generated in Gulf,
short-term warnings | Entire Gulf | offshore meteorology, satellite
data, data bouys, ocean
observing systems | | | CD ROM on evolution of Gulf of Mexico and talks of Cayman Trough - Tom McGee Develop new technologies such as in-situ cameras with high pandwidth, antifouling technology | | | Regions to look in - Region aroun
Trench, Cayman Trough, Windwa
to mouth expedition | | | | technology There is a huge private database for Gulf - petroleum exploration-have to partner with them Universal application of GIS | | | | | | | | | | Exploratio | n Information Needs | | |--|--|---|-------------|--|---| | Emphasis Area: Ob | servation and | Vlapping | | Enabling | Partners / | | Information Need - Approaches 1. Mapping of the Gulf | Description | Key Benefits | Feasibility | Technologies | Available Assets | | a. physical mapping - funnel
approach; maybe NOAA can
fund another group to do this | map, select sites,
dives - selectively
target between
topographic features,
subs, AUV's, ROV's;
intellectual mapping,
time series data | scientific - utility of dataset once it is developed, framework for further exploration, discovery of new resources (fishery, bioproducts, chemical, oil); outreach - new discoveries, interactive website; industry - new resources, fisheries, biotech, oil; education - tapping into grad students, incorporate data sets into curricula such as GIS classes | high | standard package, backscatter
data, NOAA database | oil and gas industry,
MMS, NMFS, siesmic
companies (SELL),
HARTE marine
institute, other
existing efforts, USGS,
Naval Oceanographic
service, sea map,
GOMP (EPA),
academia, NGO's | | Chemosynthetic communities a (1). Seeps - survey approach |
subsurface 3-D
seismic surveys,
biogeography
(sample), go deep | scientific - distribution, gas
chemistry (plumbing
system), biodiversity,
biogeography; industry -
may promote restrictions,
resource management,
biotech; outreach - sexy
topic | high | satellite images, oil data,
sampling technologies, coring,
access industry datasets,
chemical sniffers, spectrometers,
isotopic work, microbiology,
molecular tools, sampling
technologies | WHOI, HBOI, NSF,
MMS, DOE, NASA,
ONR, Universities,
industry
pharmocology, oil and
gas, biotech, Mexico | | a (2). seeps - target approach | high probability
targets, need to go to
the bottom (biogeog),
go deep | | high | | | | b (1). Vents - Cayman Trough -
targeted funnel approach | locate plumes, then
use ROV's, sidescan,
AUV's, general
mapping | scientific - biodiversity,
biogeography, key
biogeographic provence for
global hydrothermal
geography, connectivity
question, high potential for
new discovery; outreach -
sexy topic; industry -
biotech, resource
management | high | plume prospecting - do
multibeam and then use sensors
to look for plumes, standard
package, geophysical tools,
microbiologists, ecologists,
molecular science | NOAA - PMEL, NSF -
Ridge Project,
National Geographic,
SLOAN Foundation,
International interest,
NGO's, USGS,
Universities, Mexico,
EEZ states | | Exploring the deep benthos;
genetic connectivity; deep water
corals | inventory and characterize live bottom communities | | | | | | a. soft bottom deep - targeted | deep Gulf of Mexico is
most heavily studied
soft bottom in world,
sampling, trawls,
subs, genetics, Gulf is
a marginal basin -
distinct zoogeographic
provence | scientific -placing deep Gulf
into zoogeographic context;
industry - bioprospecting,
resource management,
habitat mapping: outreach
- very interesting animals,
interesting ecology, sexy
topic | med-high | box cores, trawls, subs, standard
sampling, molecular tech,
genetic, mapping, development
of new technologies that are
cost-effective | MMS, NSF, standard
funding structure,
FMRI, Sea Grant,
Mexico, Cuba, Census
of marine life, NIH | | b. hard bottom deep - funnel
approach | mapping identifies hard surfaces - can't trawl or box core, so photo, ROV's, subs, geology important; non-chemosynthetic hard bottom poorly studied, looking for topographic highs, lithoherms, lophilla mounds, sink holes - topographic lows - have lots of fish and corals associated with them | scientific - characterization, distribution, high likelihood of bioprospecting success, biodiversity, molecular; outreach - new communities, sexy topic, can work this stuff into curriculums, video clips on internet; industry - bioprospecting, government NIH, resource management | | photographic surveys, ROV's
(limited with currents), subs, 3-
D/4-D seismic, need better
sampling technologies and
photographic video gear,
correlating arrays | | | c. time series monitoring | post-funnel, depends
on community, new
species | | med-high | photographic monitoring, in-situ
or repeat visits, chemical
monitoring, census of organisms
with surveys, vertical hydrophone
arrays already in Gulf - can hook
up with Gulf of Mexico Research
Consortium | | | Problem in Gulf with meta-data
management - need to collect
data in useable manner
4. Charismatic megafauna | | | | | | | (whales, dolphins, manta rays, sea turtles, whale sharks, etc) a. acoustic tracking (passive - | hydrophone | | high | aerial surveys, hydrophone, | oil and gas spotters | | such as hydrophone arrays) |) -: =p::=::= | | 2 | imagery | | | Worksheet B: Identi | fy Strategies t | o Address Priority | Exploratio | n Information Needs | | |---|--|--|-------------|--|---| | Emphasis Area: Obs | servation and | Mapping | | | | | Information Need - Approaches | Description | Key Benefits | Feasibility | Enabling
Technologies | Partners /
Available Assets | | b. acoustic (active - such as tagging) | | outreach - fascinating to public - huge outreach component - warm and fuzzy; industry - resource management; scientific distributions, global entities and don't know much about them, how do large manmade structures affect their distribution/migration, reproduction, genetics | high | satellites, various tagging equipment and tech (pop-up, etc), smaller vessels, genetics, endocrinology, biochemistry | recreational fishing
communities, big non-
profits such as TNC,
WWF, Ocean
Conservancy, media,
BBC, Discovery
Channel, academic
institutions, industry | | b (1). Opportunistic tagging | carry tagging kits on
cruises or have on
hand in other
situations | | high | | | | b (2). Targeted tagging;
video/filming species | target at aggregation sites | | high | photo equip, ROV's, subs, in-situ
cameras, motion sensor cameras,
time-lapse cameras | National Geographic | | 5. Zoogeography of man-made offshore structures - oil and gas structures | | | | standard package - largely diving
and ROV's, GIS | | | a. dive from rigs, ships with divers | diving, subs, sampling
and tech diving,
systematically go to
rigs | scientific - characterization, distribution, invasive species, understanding the role of these structured +/-, how do they affect the life-cycle of fisheries, are they just FAD's; industry - resource management, pro's and con's of platform removal, provide other options for platforms not in use, biotech; outreach - interesting to public | high | commercial equipment to collect
species from rigs, need industrial
strength samplers | standard, high
potential for industrial
partners, Universities | | b. recruitment plates attached to
platforms | broad scale, formally design | | high | low tech recruitment plates | | | c. time-based observations | depth is a very
important component,
systematic approach | | med-high | | | | d. Sargassum mat time-based observations at rigs | modeling, observe
before and after mats
pass rigs, | | med-high | | | | Because of Sept 11 may have
more difficult time gaining
permission to approach
platforms | | | | | | # **Gulf of Mexico Workshop** | Worksheet A: Iden | tify Ocean Expl | oration Information Need | ds/Gaps | | | |---|---|--|---|---|----------| | Emphasis Area: O | cean Dynamics | and Interactions & Mapp | oing | | | | Information Need/Gap | What | Why | Where | Technologies | Priority | | Impacts of Underwater | | Baroclinic effects, nutrient production, | warm water environments, banks, | | 13 | | topography (Sea mounts, | | biological productivity, ID hot spots of | shelf edge | | | | pinnacles, reef edges) | | biological diversity | | | | | | scope and variability of | Insufficient scale/depth; define critical | 20-200m | single and multi bean | 11 | | | tropic productivity in reef systems | path and corridors; including eddies and bio-physical connections | | acoustics, airborne LIDAR, video | | | | Source H2O currents, | Need multidisciplinary knowledge & | Florida Straits, VI, Puerto Rico | drifters, probes, instrument | 10 | | Straits | pollutants, Nutrients,
Plankton | Coastal Dynamics | | arrays, fixed ADCPs | | | ID and characterization of | | shallows fisheries impact deep reefs | Florida Straits, South end of Cuba, | rebreathers, use of ROVs, | 10 | | deep coral reefs | | and vice versa, can be a biotech resource; ID Relationship between | VI, and Puerto Rico, Marquesas,
Lots of Places - beyond >20m | subs, mixed gas, optics, acoustic mapping, radio | | | | | depth and diversity, climate indicators | | tagging | | | Application of new
micro/macro organisms on
drug discoveries & other
industrial products | discover new products | | deep reefs, vent, seeps | | 10 | | An assessment of biodiversity | microbes, invertebrates | basic understanding needed; potential for applications | coast to the trench | | 10 | | | Impact on Ecosystems
and human & habitat
health | Need fine-scale knowledge | reefs | | 9 | | Continuous and long-term | Bio/Geo/Chem/Physical | Need long-term trends, context | coastal area followed by | (Fixed and Dynamic) Sensor | 9 | | | Properties | | everywhere else | arrays, remote sensing,
omnipresent video, develop
low light technology | | | Interactions between abyssal | unexplored, ID | | Puerto Rico Trench and | deep submersible | 7 | | (including abiotic/biotic | geothermal activity,
understand dynamics of
nephaloid layer | | surrounding area | | | | | pelagic and benthic | understanding of dynamics of fisheries | VI, Puerto Rico, Bahamas, Florida |
rebreathers, use of ROVs, | 6 | | aggregations | , | and ecosystems; conservation and management | Straits, Mexico, Belize | subs, mixed gas, video, radio tagging | | | Dynamics of interaction | | Insufficient scale and depth, ID impact | Florida Straits, VI - Anegada | | 5 | | between water masses | | on productivity | Passage; loop current production to Florida Straits | | | | Anthropogenic Noise in H2O | ships, blast fishing,
Military Ops, Energy
Refineries | Impact on ecosystems | Puerto Rico (super port),
Bahamas, St. Croix | SOSUS, deployed arrays, ship surveys | 2 | | activities | Anthropogenic impacts | understand impact on biota | Florida current, deep trenches | systematic obs | 2 | | Additive and Synergistic
Effects on ecosystems | | How does it affect fisheries? | | emerging sensors | 1 | | Connection of separated | How Habitats impact | larval transport pathways unknown | throughout Caribbean | | | | populations (esp. fish) Techniques for | each other | Apply medical tech to marine | | - | | | characterization on a short
time-scale (in the field) | | environment | | | | | sharp topography - no study | | | | | | | in warm environment | 15 1 22 | | 411.0 | - | | | Impact of Fresh H2O runoff &
Suspended/Dissolved "stuff" | ID and quantity | Impact on ecosystems & habitats - Info on land use activities | All Coastal Regions | | | | Linkage between marine | | Migrating instruments | | | | | mammals & food
source/distribution (includes | | | | | | | vertical migrators) | | | | | | | Anthropogenic impacts on marine mammals and their | | ID competition for resources and
habitat loss and degradation | | | | | habitats | | | Marguagas Tarturas Bank | fixed concers | 1 | | sea mounts, nutrient
production, special along reef
systems | | | Marquesas, Tortugas Bank,
Islamorada Humps, Riley's Hump, | fixed sensors | | | | reasons why reefs form | management and conservation | Cuban waters | core sampling/analyses | 1 | | | | | | ation Information Needs | | |---|---|---|---|---|---| | Emphasis Area: O | cean Dynamic | s and Interacti | ons | Enabling Technologies | Partners / | | Approaches | Description | Key Benefits | Feasibility | underlined = need to develop | Available Assets | | Impacts of underwater
seep topography -
seamounts/pinnacles/reef
edges | | | and the La | Side and the base POWARN is be | AOMI JACON Project | | 1 - vessel-based expedition
(large vessel) | interdisciplinary
observation,
sampling, analysis
(1m scale, fisheries,
maps; microbial
scale) | proximity to population
centers; biological
response | multiple
expeditions
required; "layered"
approach & deploy
long-term
instrumentation | side-scan/multi-beam; ROV/AUV/sub;
multi-freq. acoustics; ADCP - fixed and
towed); video (HDTV; 3-D); hyper-
/multi-spectral optics (species ID) | AOML; JASON Project;
HBOI; cross federal
and state entities;
ONR: DOI; USGS | | 2 - standard vessel expedition | | highly dynamic regions
(ex. Marquesas, west
Florida shelf) | exploration applied at the "front end" | air/sea flux measurements; shallow wate
samples; remote analyzers; deployed ger
develop real-time capability | | | 3 - aircraft-based sensors | Remote sensing of
surface & mixed layer
reflection of
topographic impacts | geologic areas of
interest (Riley's Hump,
Tortugas Bank, shelf
edges of VI,
Islamadora Humps) | first layer - high | airborne LIDAR; hyper-/multi-spectral op
ground truth | tics (species ID); in situ | | 4 - satellite-based sensors | | | | | | | | | graduate research areas
link to bioproductivity; t
biosystems; value to lor
sustainability (fisheries) | ies to broad area
ng-term | | | | Knowledge of Fisheries | | | | | | | Habitats 1 - vessel based expedition | class 1 vessel | management; better | high | standard suite" and develop acoustic | congressional mandate | | i - vessei baseu expedition | deployment | ability to monitor
impact of fishing; other
disturbances; | Tilgi I | techniques for classification (benthic, reef, and water column organisms) | Univ Puerto Rico; Univ
VI; state & regional;
territorial agencies &
councils; sport fishing;
commercial fisheries;
NURC; private industry
(Ocean Fishing
Forecasting Industry);
FL Marine Labs (HBOI,
MOTE); RSMAS | | 2 - aircraft | surface and near
surface reflection of
productivity, habitats,
temp gradients,
synthetic aperture
radar, ocean color | target areas for research; | med | airborne LIDAR; hyper-/multi-spectral optics (species ID); in situ ground truth | | | 3 - space based remote sensing | | ID key areas that may
need production -
"critical habitats"; | med | same as aircraft; tracking of tagged fish | | | 4 - shore based deployment | small craft; coastal
apps (20-200m) | ID new fisheries | high | light ROVs, AUVs, single beam acoustics, human diving technologies | | | Understanding Ecology & C
Straits, VI, and Puerto Rico | | | | | | | 1 - vessel based expedition | class 1 vessel | ID target areas for | high | "standard suite" | | | 2 - aircraft | deployment
surface and near
surface reflection of
productivity, habitats,
temp gradients,
synthetic aperture
radar, ocean color | research; ID pollutants and their sources/transport (ex. HABs); ID new fisheries; | med | airborne LIDAR: hyper-/multi-spectral optics (species ID): in situ ground truth | state & local agencies;
NASA (sat); SFOMC;
Navy (NAVO, ONR);
Univ VI; Unvi Puerto
Rico; RSMAS; local
labs; USCG; INS; CIA
(DESC); customs;
NOPP; OCEAN.US | | 3 - space based remote
sensing | | ID linkages between fisheries (including sources, sinks); | med | same as aircraft; tracking of tagged fish | , | | 4 - shore based deployment | small craft; coastal apps | management
knowledge and
resources; | med (distances) | light ROVs, AUVs, single beam acoustics, human diving technologies | | | 5 - fixed instruments and arrays | observations and observing systems | ecotourism; feasibility
of energy conversion
(public generation); | low (cost & risk) | | | | 6 - drifters | | Homeland Security;
USCG (enforcement);
environmental security | high | wide bandwidth communications (via
LEO SAT) | | | Microbial Interactions (Bad | cteria, Fungi, | | | | | | Protists, Viruses, Microalga | ae) | Impuriodo | high (r-+ ' | Potomologic quite!! !! | MILL DOG-11- 10 | | 1 - vessel based expedition | expeditions of class 1 vessels | knowledge of human
impact on habitats and
ecosystems; drug; | high (not real-
time) | "standard suite" and preservation
technology for deep samples; real-time
remote analysis; | NIH; Public Health
Service; Pharmaceutica
Industries; global
climate community;
reinsurance &
insurance industry; | | Worksheet B: Ider | ntify Strategies | to Address Pr | iority Explora | ation Information Needs | | |--|---|---|--|--|---| | Emphasis Area: C | | | | | | | Information Need -
Approaches | Description | Key Benefits | Feasibility | Enabling Technologies
underlined = need to develop | Partners /
Available Assets | | 2 - shore based deployment | small craft in coastal areas | Public exposure to benefits; | high | genomics; micro-arrays; conversion of
molecular data to signals; real-time
remote analysis | coastal management organizations | | 3 - Remote Sensing | use
physical/productivity
measurements as tip-
off information | industrial products;
human health; ID
candidate research
areas; | high | | | | 4 - drifters | | impact on global climate; | low (risk) | | | | 5 - fixed sensors | | understanding of relationships to pollutants, bioremediation | low (risk) | | | | Interactions between abys
waters (Biotic & Abiotic) | ssal depths & shelf | | | | | | 1 - vessel based expedition | expeditions of class 1 vessels | excite the public - "new frontier"; new organisms, biotech development; new products; areas of research; deep H2O impact of fisheries habitats; cultural and historical discoveries (locate shipwrecks); energy resources | med (high with
deep dive
capability or
deployed sensor) | "standard suite"; deep submersible;
deep ROV/AUV (multipurpose); surface
deployed sampling/analysis devices
(cost saving versus deep dive); low light
optics | Japan; Russia; France;
WHOI (ALVIN); US
Navy; energy industries | | 2 - fixed sensor | bottom based | | |
communications | | | Worksheet A: Iden | tify Ocean Explora | tion Information Nee | ds/Gaps | | | |---|---|---|---|---|----------| | Emphasis Area: Ob | | | · · · · · · · · · · · · · · · · · · · | | | | Information Need/Gap | What | Why | Where | Technologies | Priority | | 6 Distribution and status of
deep water coral reefs and fish
stocks | diversity, size | discover role in enhancing local
species diversity, compare to
known shallow reefs | PR, dry Tortugas, VI, Lang
Bank, Shelf bank and wall
at VI and PR, Nevassa
Island, Columbian Banks | Submersibles, ROV's, advanced diving | 16 | | 27 Health and assessment of shallow water coral reefs - need the norms of conditions for comparisons | "Norms" (coral, fish, biomass) of condition for comparison | Major resource, tourist attraction, source of sediment for beaches, center of biodiversity of shallow waters maging technologies to gain the ir | pan-Caribbean shallow water | visual technologies such as
diving, develop new
diagnostic or early warning
technologies - molecular
level technologies, remote
sensing | 13 | | high resolution)desired | , , , | | ilorniation (large scale low i | | | | 8 Distribution and nature of
submerged archaeological
resources | Shipwrecks, prehistoric sites,
submerged historical sites;
determine nature of site and
date it | Threatened resources due to profitability by others; addresses maritime cultural environment and colonial interactions and processes | Pan-Caribbean | All mapping technologies;
develop ability to properly
core and chemically
characterize site; GIS to
make successful and broad
range availability | 11 | | 5 Discover and inventory new
living resources (non-fishery)
with commercial potential | taxonomy, chemical
characteristics, molecular
applications | discover and develop new bioproducts | Florida Straits, deep water
habitats in Caribbean | submersible technologies;
new sampling technologies
- new probes, sensors,
samplers (miniaturized);
advanced diving | 10 | | 9 Biodiversity and ecology of
marine caves | taxonomy, molecular
genetics, mapping, chemical
and physical
characterization, geology,
archaeology, biochemical
characteristics | new and relatively unstudied
ecosystems, high potential for
discovery, critically endangered
species, potentially new
bioproducts | Bermuda, Bahamas,
Yucatan, Greater
Caribbean | technical diving, ROV's, mapping and GIS | 10 | | 19 Find new vents and seeps (includes fresh water seeps) | taxonomic, physical, same as deep basin | unknown exotic organisms, new insight into the evolution of life, every vent appears to be a bit different | Fresh water communities
as well as marine, brine
pools, Cayman trench, PR
trench, any seismically
active area | thermal mapping, salanity
measurements, sonar,
submersibles, multibeam,
technical diving (?) in some
of the shallower vents | 9 | | 18 Deep basins including PR trench and other Caribbean regions | biogeography, taxonomy,
physical and chemical
properties, geological work,
sediment | unexplored regions | Carribean basins (4), PR trench | submersibles, dredging,
visual, trawling, trapping,
coring, etc. | 8 | | 4 Learn status and habitats of
spawning aggregations of fish | distribution, taxonomy,
abundance, condition, life
history | Very vulnerable to fishing, many already overfished; unique habitats and locations | PR, VI, Nevassa Islands,
Columbian Banks (joint
treaty) | acoustic work; optical;
visual observations,
mapping technologies;
technologies that work at
night | 7 | | doing pilot projects that would s | show how we can fulfill the ne | | nmary' want?; not planning a | | just | | Do we need to go back and inventor of the status of fish stocks and | | | Islamanada Ulumun Elastida | DOV stores distributed | | | habitat on the Islemorada
Hump | distribution, taxonomy,
abundance, condition,
diversity | classically important fishing
area; never been explored; been
nominated as a marine protected
area | Islemorada Hump, Florida
Keys | ROV; stereo; digital video;
submersibles, drift dives(?)
advanced diving; passive
acoustics | 6 | | 11 Coral reefs, beaches, archaeological sites, and fish, water quality as well - most important - coral reefs | information and define gaps | people relevant, food,
economics, tourism | US EEZ; beaches - VI;
pan-Caribbean for coral
reefs; fish - closed areas
and MPA's; archaeological
sites Mona passage,
Southern Bahamas,
Florida Keys, Reef areas in
general since lots of
shipwrecks occur there | All technologies | 6 | | 12 Multibeam mapping of
Ocean bottom; Adapt remote
sensing from existing platforms
and transfer to ocean
exploration platforms to
increase your sensor array
capability | тар | set baseline for ocean exploration | US EEZ; ID gaps such as vent and seep communities, drop-offs, trenches, reefs | multibeam technologies,
sidescan, bottom profiler,
magnetometer, others | 5 | | Holocene (last 10,000 yrs) | what are they? How thick are they and what events do they record? | essential for understanding the
history, sea floor habitats, beach
deposits, anthropogenic factors | Florida deep water below
30 meters, VI, PR, | standard geological
sampling; acoustics;
develop new technologies -
lasers, etc. | 5 | | 25 All taxa biodiversity inventory | species inventory | Not done | location where there is
already a lot of
information such as
Florida Keys or Salt River
Canyon in St. Croix (long-
term hydrolab mission) | various sampling
technologies, taxonomic
expertise, systematics | 5 | | 16 Effort on developing
automatic signal processing of
data; openness with data -
make accessible | | | | | | | Worksheet A: Ident | tify Ocean Explora | tion Information Nee | ds/Gaps | | | |--|---|--|---|--|----------| | Emphasis Area: Ob | | | • | | | | Information Need/Gap | What | Why | Where | Technologies | Priority | | 2 Nautical charts from 15th
century on - digitize and look
at technology and scale to
provide historical record; look
at evolution of technology | database - compile current info and map uncharted areas to add to knowledge | historical record of nautical
charting, Shows historical
progress and current needs | US coastal-wide; make
this proposal driven to
determine 'where'? | mapping tools and technologies | 2 | | 26 Knowledge of the diversity,
abundance, and identity of
marine microorganisms | taxonomic information,
abundance, function,
behavior | They are the most abundant
organisms in the marine
environment, control
biogeochemical cycling, Not well
understood | water, sediments,
organisms, wide range of
depths and areas | molecular tech, new culture techniques | 3 | | 10 Clearinghouse of existing ocean data and ID gaps; Dating service to connect those who have data with those who want it; connect those who want data with those who plan to collect it or have the means to do so - data library | | Current means of data sharing are inefficient | Global US EEZ | IT technologies | 2 | | 20 Develop better coring techno | ologies with AUV's or ROV's, | | | | | | and make it available 21 Look at fragile ecosystems su | uch as coastal estuarine region | s in a new way so as not to | | | | | damage them | | - | | | | | long periods of time- gap is
long-time data sets | practical data types | lack of this type of data | surface and bottom of US
EEZ; deeper areas; areas
where there is high
current flow, Medium
sized bodies that are
practical to approach | all sensing technologies,
AUV's, any platform | 2 | | | | d do in-situ analysis on that sample
s on it in-situ; in-situ processing; n
these are probably the areas of | | | | | of deep water habitat forming
species; what species are
forming the habitats? Get a
map of the distributions of
these habitat forming
communities | associated communities | high diversity and unique
diversity counterparts to shallow
water coral reefs and may be
important for conservation and
biological diversity; Doing
more
fishing in deep water areas -
habitat degradation issues | | submersibles, GIS | | | 24 Distribution of marine geographic endemics | taxonomy, distribution, life history | many of the best studied groups have pelagic larval distributions - corals, shallow-water tropical marine fishes; may give us a much better understanding of evolution as well as extinction in the marine environment; applications to bioprospecting and biotechnology | Start at geographically
distinct areas such as
Florida Keys and compare
to US VI | sampling techniques,
molecular genetic
techniques | 2 | | 17 Water/air interface - air/sea interactions - what can we observe on a small scale | biological, chemical, physical
processes, tightly focused in
terms of what's going on -
fine scale | help us understand the
uncertainties of global change
and other global processes | Caribbean - hurricane
source; pan-Caribbean in
highly dynamic regions | develop new ones | 1 | | 22 Deep Diving and Long
Range Marine Mammals | visual, optical, all senses,
observe behavior,
environment, habitat | unknown, Led us to interesting locations | Wherever they go!
Several Caribbean
wintering ground basins,
nursery areas, feeding
grounds | design new technologies -
non-invasive and otherwise
that follow these mammals | 1 | | 28 Exploration in time - how people have used (socio economic, cultural) the oceans in past and how has it affected present condition? Where are we heading? | historical records, Trading
Patterns, Genetic Resources,
Colonization of the Islands | to assess effect of anthropogenic
factors on ocean resources | Pan-Caribbean | standard archaeological
techniques, ethnographic
data, Zoological techniques | 1 | | | | em to ocean exploration platforms | | | | | Are the exploration of the Everg | lades and Estuaries considered
nters from using national map | | | | | | | | Address Priority Explorat | ion into | ormation Needs | | |--|---|---|--|--|---| | Emphasis Area: O | bservation and Ma | pping | cost/risk | Enabling | Partners / | | () Strategies | Description | Key benefits | Feasibility | Technologies | Available Assets | | Distribution and status of de determine where they occur - 30m-70m (technical diving depths) (funnel approach) | Use Bathymetry and Remote sensing to target areas, then make visual contact and dive | map, understanding of extent of deep reefs, inventory, trophic connections - how do they work? Understanding of major commercial fishery habitat to assist in management, education/outreach such as live broadcasts, resource management | High | bathymetry, remote
sensing, multi-beam
surveys, sidescan, technical
diving, ROV's (?) | National Geographic, NSF, NURP, ONR, equipment manufacturers, other commercial operators such as major oil companies, UPR, UVI, USGS, Mineral Management Service (MMS), MBARI, NOAA center in NH | | B. Target area and then explore >70m-300m | bathymetry, remote sensing, submersibles | | Med | submersibles, remote
sensing, bathymetry | Same as above | | C. Start with existing
knowledge and explore -
shallow (targeted approach) | dive boats | | High | technical diving | same as above;
commercial dive
shops, hospitality
industry, cruise
lines | | D. Start with existing
knowledge and explore -
deep | submersibles | | High | technical diving, ROV's,
submersibles - location
dependent | same as A | | Health assessment of
shallow coral reefs | | | | | | | A. Well established standard
diving techniques | one time visual assessment | scientific benefits - resource management, selection of MPA's, understanding of disease and impacts, biogeography, groundtruthing of remote images; industry benefits - fisheries, tourism, beaches; outreach - sexy topic for public, has potential for grassroot activism, tourism | high | SCUBA | tourism agencies,
hotels, hospitality
agencies, National
Geographic,
private
foundations | | B. Remote sensing | Aircraft and satellite sensors
distinguish between dead
and living coral | | low | hypospectral techniques,
aerial photography | NASA, NOAA,
National Guard,
Coast Guard,
Navy, | | 3. Submerged archaeological | | | | | | | resources A. Shallow water (funnel | Survey then standard diving | scientific - seabed mapping, | med-high | standard diving, acoustic, | National | | a. Analow water Targeted; non-invasive commercial exploitation) | and archaeological techniques same as shallow reef (2. A) Use historical records to | shipwrecks are niches in and of themselves, potential for finding unique sites and resources, new insight into history and pre-history, new insight into development of technology; outreach - video clips, artifacts, inquiry, resource is 'sexy'; industry - non-invasive cooperation of commercial industry, enhancement to tourism and associated industries, museum displays | , and the second | magnetometer | Endowment for
the Humanities,
NSF, NGO's,
National
Geographic,
private and
corporate
partners, affinity
groups, Discovery
Channel - media,
academic
partnerships -
FSU, MIT, WHOI,
TAMU, William and
Mary, Univ of
Bahamas, UPR;
NURP,
Smithsonian | | Approach | select sites, then use
standard diving and
archaeological techniques | | high | | | | C. Shallow Water non - invasive cooperation | cooperation between
science, commercial,
management to explore
archaeological resources | | low | | | | D. Deep water Funnel
Approach
E. Deep Water Targeted | Survey then technical diving,
ROVs, SUBs, and
archaeological techniques
Use historical records to | | low | Add technical diving,
submersibles, ROVs | | | E. Deep Water Targeted
Approach | use historical records to
select sites, then use
Technical diving, ROVs,
SUBs and archaeological
techniques | | печит | | | | | | Address Priority Explorat | ion Info | ormation Needs | | |--|--|---|--------------------------
---|---| | Emphasis Area: O | bservation and Ma | pping | 1 | | Ta | | Information Need -
() Strategies | Description | Key benefits | cost/risk
Feasibility | Enabling
Technologies | Partners /
Available Assets | | F. Deep Water non-invasive cooperation | cooperation between
science, commercial,
management to explore
archaeological resources | | low | - | | | | living resources (non-food spe | cies) with commercial potential | | | | | A. Site Identification | | science - discover new species, genetic and chemical diversity, bioactive compounds, new bioproducts, understanding role of compounds in nature; commercial - bioproducts, public disclosure of data; outreach - sexy topic, media coverage | | bathymetry multi-beam and side scan | pharmaceutical industry, biotech, medical manufacturers, equipment manufacturers, USDA, cosmetic companies, NIH, NSF, NURP, Sea Grant, MBARI, WHOI, NASA, NCNPR, HBOI, SIO, UH, Smithsonian | | a. Funnel Approach | High Resolution bathymetry
to map deep water hard
bottom areas. Use this | | high | | | | b. Targeted Approach | information to identify sites Use Existing Maps to identify | | high | | | | J 11 | sites | | . 11911 | | | | B. Sampling
a. 30-150m | Tech diving and manual | | med-high | tech diving, manual | | | d. 30 130iii | sampling | | Thea riight | sampling, develop new
sampling tools and new
tools to keep samples alive
(high pressure, low temp
containers) | | | b. 150m to bottom | submersibles, ROVs, AUVs to collect samples | | medium | develop new sampling tools as in above, submersibles | | | 5. Marine caves | | | | | | | A. Approaches for Identifying
Caves | | scientific - new species, higher taxa, living fossils, most species endemic, potential for new life forms, potential links for deep sea, biogeography, evolutionary questions, genetic diversity, endangered species and habitats, archaeological discoveries, potential for chemical, geological, physical discoveries, new bioproducts, sea level history, tectonic info; industry - bioproducts, tourism; outreach - way cool, high adventure and high risk, exotic and historic artifacts, classic form of exploration - cave divers called explorers | | technical diving, cave cam,
develop new tools, all
traditional sensors for
collecting oceanographic
properties, remote sensing,
satellite and aerial
photography, topographic
maps, speak with cave
divers, geological maps | diving -
commercial
operators such as
charter boats,
cave divers,
fishermen, hunters | | a. dive | visual observations while | | Н | technical diving | | | b. oceanographic properties | look for chemical and | | Н | traditional sensors, satellite | | | c. multibeam | physical signatures
ground truth with other | | Н | photos, submersibles
Multi-beam | | | | methods to look for patterns | | | | | | d. local knowledge | speak with locals | | Н | cave divers, fishermen,
hunters | | | B. Approaches for Exploring Caves | | | | | | | a. Shallow (above 70m) and large (at least human size) | cave cam, AUV, remote samplers, drilling | | high | GIS mapping, cave cam,
drilling, data processing
and visualization tools,
sampling technologies,
AUVs, Remote Samplers | | | b. Shallow (above 70m) and
Small | shallow small - cave cam on flexible cable, drilling core | | med -
high | Same | | | c. Deep (below 70m) and
large (at least human size) | holes;
and add remote sensing;
large deep ROV's, | | med - low | Same (no diving) | same as last one
and add
taxonomists, many
universities and
museums all over
world | | d. Deep (below 70m) and | small deep same as shallow | | med | Same, just different | ona | | small | small | | | platform | | | Worksheet B: Iden | tify Strategies to A | Address Priority Explorat | ion Info | ormation Needs | | |--|---|---|--------------------------|--|--| | Emphasis Area: O | bservation and Ma | pping | | | | | Information Need - () Strategies | Description | Key benefits | cost/risk
Feasibility | Enabling
Technologies | Partners /
Available Assets | | C. Tie into geological drilling
projects or other existing work
to find micro-caves
(partnerships with existing
efforts) | find out who is doing what,
and get the remains of core
samples and work | | med | coring, smaller tools (bore hole size) | Same add taxonomists | | 6. Vents and seeps | | | | | | | A. Identification | same as caves but watch temp more | scientific - similar to caves and living
non-commercial lists, unknown;
industry also same but commercial
benefits are less; outreach - way cool,
earth's processes, water/land
interface in the ultimate sense, great
extremes | med - low | | | | B. Explore | time series photos, physical,
microbial, chemical,
biological sampling, detailed
mapping | | high | ROV's, submersibles AUVs,
deployment of platforms
that stay in place for long
term monitoring, some new
development of tools and
platforms, cameras | same as last one
but less
commercial more
foundations,
possible oil and
gas | | 7. Deep basin | | | | | | | Spawning aggregations | | | | | | | Fish stocks and habitats | | | | | | | 10. Coral reefs, beaches, fishes, archaeological sites | | | | | | # Hawaii Workshop | | | loration Information | Needs/Gaps | | | |---|---|--|---|--|----------------------| | | Ocean Dynamics | | | | | | Information Need/Gap | What | Why | Where | Technologies | In
te
re
st | | Understand the Pacific
Ocean regarding the origin
of life (vent communities,
any optimal environments,
etc) | interaction between
geology, biota, circulation | Identify genomes -
microorganisms, understand
survivability, macrofauna and
ecosystems, leads to detecting
life elsewhere, relates to
ourselves; how does life
create itself | Loihi - volcano, hot spot;
Juan de Fuca; cold seeps;
Back Arc Basins (Guam,
Samoa, Lau) | standard ships; ROVs; subs; sampling and incubation systems | 1 | | Marine biodiversity -
inventory from Hawaii
Islands | link investigators to coordinate | identify diversity; over fishing issues; biomedical opportunities; fishing issues | NW Hawaiian Islands to compare species; deep ocean areas | observatories at depth; deep ocean
sampling instruments; low light
cameras, video; acoustics; AUVs | 9 | | Characterization of bottom
habitats | match fish species to
bottom characteristics;
collect ground truth with
deep tow side scan sonar;
seafloor sediments
characteristics; bottom
currents | fishery population; food web;
stock assessment (tuna
issues) | Samoa; Marianas Islands | ROVs fly through; canyon fishing | 7 | | Locating unknown seamounts Deep seamount biomass understanding | verifying location;
sampling; mapping
sampling; deep scattering
layer over hydro plumes | spawning habitats; Earth
evolution history
spawning habitats | start comparing altimetry w/
nav charts
West Mounts; Neckeridge;
Hawaiian Islands; Musician | altimetry maps; swath bathymetry; fishing boat watching | 7 | | Gaps in exploration in past of arcs | less than 2% been explored; location of chemical fluxes and plumes; biotas; volumetrics; geologic signatures; tracing ocean circulation; sensing water column | plate tectonics, submergence,
divergence, what initiates
subductions; impact on
variations on biomass and
climate; mineral resources | Seamounts euphotic zone in Tonga Kermadec Arc | ships, ROVs, AUVs | 7 | | Understand habitat of
large pelagic animals -
migration corridors, use of
ocean, vertical movements | attach instruments to
animals - movements;
fronts, eddies; interaction | better management of living
marine resources; fishery link
between population and food
source; mercury source | central Pacific (around
Hawaii); coastal Kona (Big
Island); ship of opportunity;
Hawaiian Ridge | technologies attached to animals -
archival tags, pop up satellite tags
(PSAT), video;
ARGOS | 7 | | Natural history of
Hawaiian Islands;
geological controls on
marine biota | what we don't know -
seamount biology, why
islands all different;
geophysical history; how it
ties into current optimal
and extreme environment;
landslide collapses;
anthropogenic influences | how were they formed; future of human's impact; survival of islands ecosystems; speciation between islands | Hawaiian archipelago;
surrounding pelagic waters;
NW Hawaii - French Frigate
Shoals; SE Hawaii - Big
Island | multiplatforms; mobile observatories | 6 | | Understanding
biomagnification of
pollutants and toxins in
the marine food web
(similar to large pelagic) | | food source; nutrition; public
health; ecosystem health | Kona coast; Ecuador; Peru;
Alaska | tracers; genetic markers; sampling and ID tools; stable isotopes | | | Sample and map new hot
spots; fundamental
understanding | sampling deep mantle
plume; sample volcanic
edifice edge of seafloor | chemical fluxes; heat fluxes;
Earth survivability; source of
potable water | Samoa; Loihi | SOSUS; Isla - Infra Sound Lab (U.N.);
bring back Hugo | 5 | | Climate Change -
feedback of ocean change
on biota | studies in tone with El Niño
events; long term; carbon
fluxes in thermocline | impact on biological pump | Equatorial Pacific S. America;
Galapagos; Toca Tao Arrays | genetic sampling; satellite (remote
sensing); mass spectrometer;
sediment traps/cameras | 4 | | Trenches | gas hydrates | life under great pressures (barophiles) | Marianas Trench; Tonga
Trench | deep diving vehicle | 2 | | Data management of
collected information,
samples, etc - Directory
(OE Catalog) | web sources; publics;
displays; satellite links;
presentations | information to the public | Bishop Museum; HURL; Reef
Talk | video data management system;
internet; sample catalog | | | Worksheet B: Identify Strategies to Address Priority Exploration Information Needs | | | | | | | |--|---|--|--|--|--|--| | Emphasis Area: Ocean Dynamics and | "standard" partners - UH, State of H, NMFS, NOS, NMS, USCG, Bishop Museum | | | | | | | Interactions | | | | | | | | Information Need & | Description | F 10-1114 | Enabling | Partners / | Kara Danastika | |---|--|------------------------------|--|---|--| | Approaches | Description
cean regarding the origin of life | Feasibility | Technologies | Available Assets | Key Benefits | | any optimal environments | | (veni communities, | | | | | 1 - Funnel (including
Tow-Yos) | area to target (Tow-Yos -
sampling in vertical) | mod (\$\$) | standard + specific sampling,
HDTV, digital camera
systems for culturing
organisms | JAMSTEC, Univ of
Washington, PMEL, NASA,
GNS, COMB (Center of
Marine Biology at
Maryland) | genetic origins; biotect
products; understand
modes of life; outreact
and education | | Manda a late di caratte di lacca | atan fama Hawaii Islanda | | | | | | , | ntory from Hawaii Islands | . (++) | | | | | 1 - Deep Marine (>200m
- ~6500m or beyond) | along and around Hawaiian
Ridge | mod (\$\$) | deep submersible; ROVs; benthic observatories | JAMSTEC; standard partners; ONR | preservation of species; outreach & education; | | 2 - deep ocean
observatories | targeted at ridge; long term | mod (high tech
challenge) | insitu observatories; self cleaning camera lenses | standard partners | understanding of wide
environments; obs in
natural environments; | | 3 - animal borne instruments | targeted and obs. Approach | high | critter camera technology;
rugged low light cameras | National Geographic;
NMFS; US Fish & wildlife
services | marine mammal
survivability; marine
life/ecosystem
management; ocean
foraging | | Characterization of bottom habitats | | | | | | | 1 - funnel | broad scale characterization | high | ROVs; swath; deep tow;
remote sensing of shallow
areas; acoustic surveys | Navy; WHOI; U.H. Mapping | stock assessment;
fishing industry;
understanding
essential fish habitats | | Locating unknown seamo | unts; Deep seamount biomass | | | | | | understanding | | | | | | | 1 - funnel | altimetry mapping comparisons; geoid products | high | better altimetry sensors and
data processing; improved
spatial coverage | NESDIS; NASA; Navy | mapping for fishing
industry; earth science
Pacific plate evolution | | 2 - target individual seamounts | moored stations; deep dives | mod (\$\$) | standard package; bio
sampling; gravity survey;
deep tow; AUVs | Navy | new fisheries;
understanding fish
spawning, topo. Bio.
coupling, foraging,
upwelling; fish
migrations | | Gaps in exploration in | | | | | | | past of arcs | | | | | | | 1 - Tonga Kermadec -
funnel, target, obs | standard plume techniques | high | airborne remote sensing
surveys; XBTS, high
precision; standard package,
tow-yo | PMEL; GNS; JAMSTEC; NSF - ridge program; | mineral resources;
plate tectonics;
variations of biomass;
oasis of life | | 2 - follow on obs.
approach | | high | ocean observatories | American Samoa; NMFS;
NMS | | | Understand habitat of lar | ge pelagic animals - migration of | corridors, use of | | | | | ocean, vertical movemen | | | | | | | 1 - targeted & observational | commercial/research vessels
for tagging; satellite data
comparisons for behavior
patterns; acoustic subsurface
surveys (foraging) | high | critter camera technology;
satellite archival tags;
ARGOS; remote sensing;
acoustic surveys; instrument
research | fishery council; Hawaii
Long Line Assoc; National
Fish & Wildlife; National
Geographic; NIWA (New
Zealand); CSIRO
(Australia); SPREP (S.
Pacific Reg. Env. Prog.) | fisheries industries;
stock/resource
assessment/mgt;
international
cooperation | | Natural history of Hawaiii
on marine biota | an Islands; geological controls | | | | | | 1 - targeted | includes shallower water;
land based influences; effects
of high island; altimetry
mapping comparisons; geoid
products; hyperspectral
surveys; high res. seismic
surveys | high | standard package; airborne
hyperspectral surveys;
ground truthing | JAMSTEC; NOS; USGS;
standard partners | marine resources;
better maps; hazards
issue | | Worksheet B: I | dentify Strategies t | o Address Pr | riority Exploration I | nformation Needs | 3 | |---|---|--------------|--|--------------------------------|--| | Information Need &
Approaches | Description | Feasibility | Enabling
Technologies | Partners /
Available Assets | Key Benefits | | 1 - observational | reef fishes; quantifying toxins | high | tracer technologies | EPA; standard partners | fishing industry;
health; education | | Sample and map new ho understanding | t spots; fundamental | | | | | | 1 - targeted | investigate Loihi, Samoa,
Louisville Ridge | high | standard technologies; ocean
bottom observatories;
SOSUS, Sonobuoys Ocean
Bottom Seismometer;
Acoustic | USGS (Hawaii Volcano);
GNS | understanding
chemical fluxes,
biomass | | | | | | | | | Climate Change - feedbar
1 - observational | ck of ocean change on blota
time series with El Niño
events: determine impacts on
equatorial Pacific biological
pump; long term | mod | fluorescent signal of phytoplankton species | standard partners | understanding biotic
feedbacks on climate
change;
predicting/modeling
changes on impacts | | Trenches | | | | | | | 1 - targeted | Tonga Trench; deep dive mapping | high/mod | extreme deep diving for ROVs; sampling tech | JAMSTEC; NSF - Margins | plate tectonics; new
species; subduction
factory | | Data management | develop catalog coordination;
central catalog, clearing
house | high | internet; digital process
annotation | everybody | outreach and education | | Worksheet A: I | dentify Ocean Explorat | tion Information N | leeds/Gaps | | |
---|---|---|---|--|----------| | Emphasis Area | : Observation and Mar | pping | | | | | Information Need/Gap | What | Why | Where | Technologies | Interest | | 23. Specific geological features | | | | | 9 | | A. Submarine canyons | carbon cycling, areas of high
productivity, ID and characterize
communities, maps | not studied, area of high
productivity, potential fish
nursery habitats | Kaneohe Canyons, Haleiwa
Canyon, Waimea Canyon | subs, ROV's, bait
deployment, mapping | 9 | | B. Seamounts | ID and characterize communities,
ID new species | potential for new species -
high speciation so could
contribute to question of
where species come from,
potential stepping stones
for species dispersal,
evolution question | NW HI to start and then look
outside to examine dispersal,
evolution, many seamounts
have no names, Emperor
Seamounts | | 9 | | C. Solution Basins | | | off Maui | | 9 | | D. Banks | | | Penguin Banks, NW HI Banks | | 9 | | 14. Current patterns and gyres and how they are changing | food production, marine debris
deposits, how do they change and
how are they affected?, larval
transport | changes in ocean currents affect many things such as distribution of larvae, if can get a better handle on predicting changes, may be able to counteract problems associated with changes, fisheries management, early Polynesian navigation knowledge, cultural knowledge regarding dispersal of early Polynesians | HI Archipelago - large
system focus | satellites, time
observations, floating
instruments, physical
oceanography,
molecular techniques to
look at long-term
dispersal patterns | 2 | | 13. Internal waves | physical oceanography, internal tides | how do these tides affect currents and impact distribution of marine life, mechanisms of upwelling, not well understood, may use this info to detect where coral beds and other suspension feeding organisms exist | sea mounts - 2002 proposal sites | ADCP's, long-term moorings | 1 | | Paleoshorelines In Index and an | sea level information such as
history, finding wave notches,
ledges, other geomorphological
features, lava tubes and marine
caves - biology | get a handle on sea level
history, management -
habitat as well as resource,
chain is undiscovered, gain
insight into rise and fall of
islands
better limits of yield | HI Archipelago (focus in NW
and main islands - Midway,
Oahu, Necker, main island,
Brooks, Lisianski) Kaneohe Bay | coring technology,
advanced diving, subs
and other vehicles,
multibeam for mapping,
animal borne
instrumentation | 5 | | population from
geological records | geologic time | better mints or yield | Transcoric Bay | | | | | dentify Ocean Explorat | | vecus/Japs | | | |--|--|--|--|---|----------| | | Observation and Map | | | | | | Information Need/Gap | What | Why | Where | Technologies | Interest | | reefs) | carbonate samples, date, taxonomy | evolution insight,
biotechnological application | deeper the better, NW HI,
Emperor Seamount chain,
Kure and other seamounts
up the chain | subs, manipulator,
sample collection | | | 17. Marine parasite lifecycles | documenting parasites, life cycle,
primary and secondary hosts | little known about them,
bound to find new species | compare regions to look for pollution relationships, NW HI | fishing, sampling
technology, subs,
genomics,
histopathology,
specimen collection | 3 | | 15. Pollution and marine pathogens | pathogen count as a marker | organisms getting sick,
human impact | event driven, Kaneohe Bay,
Pearl Harbor, sewage outfall | molecular biology techniques, genomics | 1 | | Submerged archaeological sites | location, material remains, priority areas, identify microbial community of sites to determine age, dating, erosion control, biological climate, identify and catalogue biological community | historical significance, to eliminate pot ential for activities that might jeopardize artifacts such as looting, dumping, etc, Federal Abandoned Shipwreck Act of 1978, looting a problem in Hawaii, ecological impacts, tourism | Kure Island - one of most significant wrecks in Hawaii - Naval Historical Center probably interested in this site; protected zone off Pearl Harbor - several subs there - historic landing sites; Nihoa Island and Necker Island; wider Pacific; US Insular Pacific; Hawaiian Islands - Oahu, big Island Hawaii, Kure, Pearl Harbor, Midway, Lanai (shipwreck beach) | side scan sonar, magnetometer, technical and advanced diving, ROV's, subs, aerial survey or remote sensing, technology dependent on location and type of wreck-later excavation, conservation, and display - need conservation facilities, microbial technologies, microchip technology | 12 | | 5. Animal distribution
patterns | all life stages - larvae through
adults, population structure,
corals, charismatic megafauna
(sharks, whales, dolphins, seals,
sea turtles) | resource management,
because they are there,
connectivity questions,
tourism | HI Archipelago (Hoomalu
and Mau regions - have at
least one site in each region,
also big island site), specific
relationship between main
HI and NW HI and between
Johnston Atoll to S. Japan,
island to island, bank to bank
relationships | tracking devices,
genomics, develop new
faster genomic
technologies to be used
on ships, current
meters, ADCP's,
molecular techniques to
ID larvae, video
technology, time lapse
photography | 12 | | Identifying
ecologically critical
habitats | diversity, location, substrate type,
visual information, reflected
imagery, community structure | some will be important to
fisheries, to protected
species, establish links to
undersea landscapes | intermediate depth regions, wide range of depths - mostly moderate depths to deeper depths, NW HI Islands - 2002 sites as specified in 2002 proposals, US Pacific Insular Islands, Guam, Samoa, CNMI | archival capability,
current meters,
ADCP's,
multibeam Same as
above, tagging
technologies | Ċ | | Formation of
biofilm/microbial mat in
extreme environments | diversity, members of consortia,
genome mapping, discovery of new
antibiotics, chemistry of the
environment | origin of life questions,
biotechnology | Loihi hydrothermal vent,
New Zealand, Marian as
Trench, any extreme
environment | coring technology,
genomics, protein
chemistry, microchip,
confocal microscopy,
develop portable
confocal for ship use,
small gc/ms, subs and
other collection vehicles | 8 | | New species/records inventory | abundance and diversity, taxonomy | very little is known about
this region and it is now a
huge reserve, beginning
sanctuary designation
process, bioprospecting,
may need additional levels
of protection on certain
rare species - management | NW HI (2002 proposal sites) - far islands such as Kure and beyond where there have been no subs thus far, get close to N Pacific transition zone, US Insular surveys, maybe look at some equatorial areas for comparison | same as above with multibeam added | 6 | | 10. Active volcanism | ID sites, composition, geological
properties, biological properties,
chemical properties, plume
characteristics | sites of very interesting
organisms - extremophiles,
geological interest, creation
of islands | ŭ | thermal technology,
magnetometers,
seismology | <u>.</u> | | 6. Ocean acoustics | unique species fingerprints | benthic habitat, describe
acoustic landscape
including inverts marine
mammals, etc, calibrating,
unknown | HI Archipelago (NW and
main HI mapping), Guam,
CNMI, Am. Samoa, deeper
areas | sonar - active and
passive, use subs and
other vehicles for insitu
measurements, archival
measurements | | | 21. Ecosystem interactions | trophic level interactions, define where gaps are | to better understand for
ecosystem management
purpos es | primary productivity to infauna | will vary, stable
isotopes, fatty acid
analysis, modeling | | | 7. Library of community DNA | DNA archive | can collect this info during cruises | all communities | DNA storage
technologies | 3 | | 9. Mineral resources | location, composition | resource management,
commercial value, can
contribute to knowledge of
geologic history | Johnston sea mount, other sea mounts | subs and other vehicles,
multibeam | 3 | | Worksheet A: I | dentify Ocean Explora | tion Information N | leeds/Gaps | | | |---|---|--|---|---|----------| | Emphasis Area: | : Observation and Mag | oping | | | | | Information Need/Gap | What | Why | Where | Technologies | Interest | | 16. Charting of seamounts and banks | mapping with more sophisticated technology | Some NOAA charts are not accurate | all submerged banks,
particularly those that can't
be seen through aerial
photography, NW HI at 25-
100 fathoms | multibeam | 3 | | 24. Coelocanth, giant squid, megamouth (obscure, unknown critters) | location, habitats?, population
distribution, abundance, genetics,
images | exciting new species, know
nothing about them, future
funding and outreach - PR,
evolution questions | Indonesia (coelocanth), HI,
California (Pacific)
(megamouth), New Zealand
(giant squid) | imaging, subs, ROV's | 3 | | 22. Marine viruses | what effects on carbon and phosphorus cycling | to understand their effects
on carbon and phosphorus
- looks like they may take
up all the phosphorus | Oahu, Station Aloha
(permanent sampling site -
mooring) | water sampling,
virology, bacteriology,
molecular biology
techniques | 2 | | 11. Locating and
removing unexploded
ordinances from coastal
regions | | there are lots of 'bombs' in
coastal regions and Navy is
all talk and no action on
subject | | · | | | 12. Safe nuclear waste disposal site | | | | | | | 20. Infaunal organisms | taxonomy, sediment ecology | discovery of new species,
not well understood,
relates to carbon cycling | compare NW HI to others
down chain, different depths,
soft bottom | sampling, multibeam,
coring, subs, diving | | Emphasis Area: Observation and Mapping tandard partners for State of Hawaii - UH, NMFS, DLNR/DAR, NOS, Sea Grant, HURL, West PAC, Bishop Museum, DOE, Fish and Wildlife Service, Navy Historical Center, National Park Service, USGS, Coast Guard, ONR, NSF | Worksheet B: Ident | ify Strategies to A | Address P | | | Needs | |---|---|-------------|---|--|---| | Information Need &
Approaches | Description | Feasibility | Enabling
Technologies | Partners / Available Assets | Key Benefits | | Submerged archaeological | Bessiption | rodonomity | . com longico | / (Valiable / Issets | ney Bonems | | sites A. Near-shore low impact visual survey - Targeted | historical research,
archives, non-invasive
documentation | Н | small vessels, aerial
survey | Standard plus the following: Naval Historical Center, National Park Service, National Geographic, Discovery Channel, DOI, State Historic Preservation Division, Hawaii Historical Foundation, Hawaii Community Foundation, Bishop Museum, CMAR, other small NGO's, Smithsonian | scientific - in state and federal
laws that historic vessels are to
be protected; industry - tourism;
outreach - lots of public interest,
education, stewardship of cultural
resources; regulatory -
protecting areas | | B. Mid-water remote sensing | documentation to narrow
down to select survey
areas, groundtruth targets | Н | vessels, sidescan, conservation ability | S. T. S. | | | C. Deep water | survey targeted areas then groundtruth | М | standard package,
conservation ability | | | | | | | | | | | 2. Animal distribution patterns | | | | Standard partners plus
fishermen - recreational
and commercial | scientific - new knowledge, don't
have a good handle on larval
stages, biogeography,
connectivity; regulatory -
management; industry -
commercial fishery; outreach -
public interest, sexy topic,
stewardship | | A. Opportunistic (fisheries)
Adults only | tagging through existing operations such as fishing industry | Н | tags | | | | B. Targeted tagging adults | mark-recapture of marine mammals, photo ID | M-H | standard package
plus tags, cameras | | | | c. Targeted tracking adults | track over time with tags and acoustic moorings | M-H | standard package
and/or RAPT
system for tracking,
tags, cameras,
ADCPS, time-lapse
photography, aerial
survey, digital ID
tools | | | | D. Genomics (can be part of tagging and/or tracking) | collect tissue and analyze | М | standard plus
genetic tools | | | | E. Otolith elemental
fingerprinting | collect specimens through HI Arch. and analyze | L | fingerprinting tech | | | | F. Larval distribution patterns | collect and ID samples | Н | plankton tows | | | | 2. Chapitia gaplagiani factures | | | | | | | Specific geological features A. Survey | survey, map,
groundtruthing, sampling,
direct observations, ID and
characterize organisms as
well as features | Н | standard package,
genomic
technologies,
coring, molecular
techniques; video
live feeds for
outreach, Hugo at
Loihi volcano;
dating technologies | standard partners, HUGO,
telephone companies,
outreach partners, National
Geographic, Discovery
Channel, drug companies,
MMS | scientific -history of HI, ID new
species, species dispersal,
evolution, biogeography, ID new
habitats; outreach -public
interest, lots of opportunity;
industry - fisheries, minerals,
biotechnology | | 4.5.4 | | | | | | | Extremophiles A. Targeted approach for ID | known vents, trenches, | Н | standard package, | | | | purposes
B. Characterize | seeps, cold water, fish guts
ID through genomics and
other molecular techniques | M | coring genomics, protein chemistry, GS/MS, need to develop better technology, bioreactors for culture purposes | drug companies, biotech
industry, standard partners | scientific - new products, origin of life | | 5. Ecologically important | | | | | | | habitats | | | | | | | Information Need & | | | Enabling | Partners / | | |-------------------------------------|---|-------------|--|---
---| | Approaches | Description | Feasibility | Technologies | Available Assets | Key Benefits | | A.Temporal/spacial observations | | M | Standard package
plus, ADCP's | Standard partners plus
outreach partners,
fishermen, National
Geographic, Discovery
Channel | Scientific - biogeography,
biodiversity, ecosystem
interactions, community structure
management, restoration;
industry - recreation, fisheries;
regulatory - reserves,
management | | B. Funnel approach | mapping, then direct observations | Н | Standard package plus | Same as above plus recreational divers | | | C. Animal borne camera system | locating critical habitats with critter cam system | Н | may need standard
package, camera
system | Same as above | | | D. Targeted approach | use existing and historical information | Н | may need standard
package | Same as above plus recreational divers | | | | | | | | | | 6. Active volcanism | | | | | | | A. Access naval data | | L | Standard package
plus passive
acoustic arrays, live
feed for outreach | Standard partners, Navy,
National Geographic,
Discovery Channel, deep
sea mining community,
New Zealand, Japan, Island
Nations, Indonesia,
Australia, maritime
industry, biotech, minerals | scientific - extremophiles, origin of life; industry - minerals, biotech; outreach - lots of public interest | | B. Airborne geochemical | track plumes and trace
elements from plumes from
air, funnel approach | M-H | Standard package plus remote sensing | | | | C. Seismic | | М | Same as above plus
seismic
technologies | | | | D. Passive acoustics | set up listening arrays | L | Same with acoustic tech. | | | | E. General mapping | locate features using
mapping technology | М | mapping tech | | | | | | | | | | | 7. New species ID (macro and micro) | | | | | | | A. Opportunistic | ID new species through existing expeditions | Н | Standard package
plus molecular and
genomic techniques | Standard partners plus
fishermen, Smithsonian,
New Species Consortium,
Sloan Foundation, National
Geographic, Discovery
Channel, Packard
Foundation | scientific - origin of life,
evolution, census of marine life;
industry - biotech; outreach -
can be a really big deal so huge
public interest; regulatory -
management | | B. Targeted - geographic | going to areas and habitats
that are not well
documented | Н | | | | | C. Targeted - organisms | examining organisms for
new organisms (parasites) | Н | | | | # Alaska Workshop | | What | Why | Where | Technologies | Interest | |--|---|---------------------------------------|-----------------------|--|----------| | Information Need/Gap Fjords of southeast and | Contrast recent | Intense fisheries issues, | Glacier Bay, Prince | Multibeam, groundtruthing | mterest | | southcentral Alaska, especially | glaciated landscapes | MPAs establishment, | William Sound, Icy | including submersibles, | | | he deep and dynamic ones | to more stable and | emerging landscapes, often | Bay.; Substrates for | ROVs, AUVs, and | | | Hooge) | tidewater to non | extremely dynamic. Lots of | habitat mapping. | oceanographic sampling | | | (1looge) | estuaries. Tidewater | opportunities to leverage off | nabitat mapping. | with CTDs, ADCPs; divers; | | | | | of other studies in these | | | | | | glacial vs nonglacial.;
Substrates for | areas. And lots of | | ships of opportunity | | | | habitat mapping. | opportunities to have strong | | | | | | Detection of species | outreach component e.g. | | | | | | distributions. | cruise ships. There are also | | | | | | Determining some of | recolonization issues e.g. | | | | | | physical and | following biocatastrophe; | | | | | | biological effects of | Isostatic uplifting. | | | | | | deglacialization. | 1303tatic upiliting. | | | | | | They have complex | | | | | | | oceanographic | | | | | | | regimes and teasing | | | | | | | out would be good. | | | | | | Documenting climate | 500 million year | Is human activity changing | | | | | | | Is human activity changing | | | | | variability (Molnia) | record of global | the Gulf? | | | | | | climate. Need to | | | | | | | examine it to look for | | | | | | Olasiana (Malaia) | variability | Niek well wedenske ed | Code of Alaska | Codingont | | | Glaciers (Molnia) | How did the glaciers | Not well understood | Gulf of Alaska | Sediment sampling, | | | | existing in the Bering | | continental shelf | ROVs/Dives, high | | | | Sea change over | | between Cook Inlet | resolution geophysics | | | Francisco de la Contraction | time? | for the contraction of the | to Canadian Border | and the second s | | | Explore environment created | sample; identify; | fresh water inputs to ocean; | southeast Alaska | surveying bottom | | | and released by retreating or | characterize | consequences of rapid glacier retreat | Glacier Bay | sediment; sampling | | | advancing glaciers | | 3 | | | | | Characterize / explore | high salinity / low | identify new species and | Bering Basin / Arctic | extreme cold technology; | | | extreme environments | temp environments | novel protection mechanisms | Ocean | sampling; biochemical | | | | | against extreme conditions | | genetic screening | | | Aleutian Trench | Geology (improved | Possible feeding dynamics, | From start to very | Mapping, multibeam | | | | mapping), corals, | possible resources in shallow | | ROV/AUVs, sediment | | | | habitats, inventory, | areas, deep water coral | Chain | sampling - coring; video | | | | Methane seeps, | communities for fish habitat, | | | | | | trophic systems, new | major subduction zone that
| | | | | | species | is unexplored | | | | | Aleutian Arc | structural arc; | Geologically active, | Region between the | Sediment sampling, | | | | substrates; patterns | submarine volcanism; strong | islands and north of | "everything", seafloor | | | | of coral distribution; | current habitats; migration | the Arc. (abyssal | mapping, rock sampling, | | | | hydrothermal | issues | plain); From | water column methane | | | | venting; Biodiversity, | | southern | sniffing. AUVs for mapping | | | | biology, and | | boundaries of the | broad shallow areas of | | | | oceanography, | | platforms, north to | continental shelf. Much | | | | volcanism | | abyssal plain of the | better than using surface | | | | | | Bering Sea | ship. MBARI has | | | | | | | developed vibracoring | | | | | | | system which could be | | | | | | | adapted for this project. | | | _arge Physical Features - | rate of the | important area that is poorly | Southeast Alaska, | Multibeam, manned and | | | Aleutian Canyons | consumption of the | characterized; very | Aleutians; Deep | unmanned submersibles | | | (Yogodzinski) | physical plate; | systematic changes | Canyons in Aleutian | (7000 m), technology that | | | | geochemistry; | occurring along chain due to | Fore Arc (POC - | allows you to hold station | | | | sediment transport; | shape; Dynamic physical | Phillip Rigby and | in strong current. | | | | | system; Integrated physical | Gene Yogodzinksi); | | | | | area; hot springs | system and its connection to | Bogoslov; near | | | | | seeps; very | biology | subvolcanoes | | | | | interconnected | | | | | | laur da braaka != #b = -b = !! | physical systems. | may be imported | company in Code - C | travila, mata, c | | | How do breaks in the shelf | survey and sample a | may be important areas for | canyons in Gulf of | trawls; nets; sampling; | | | edge (canyon) influence the | suite of canyons | production of fish or | Alaska, Aleutians, | visualization techniques; | | | distribution and abundance of | | advection of deep-dwelling | Bering Sea | physical oceanography | | | species; are they the locale of | | species onto the shelf | | tools | | | novel species assemblages | 0 1 " | | D 1 0 0 | A. 1 100 | | | Bering Sea Canyon | Geology (improved | Is human activity changing | Bering Sea Canyon; | Mapping, multibeam | | | | mapping), corals, | the Gulf?; Interaction with | Kodiak Seamount | ROV/AUVs, sediment | | | | habitats, inventory, | shallow water | | sampling - coring; video | | | | Methane seeps, | | | | | | | trophic systems, new | | | | | | | species | | | | | | Continental Rise and the | Biological | Least studied part of the | arc of the Gulf; Gulf | Suite of geological and | | | Outer Continental Shelf, right | communities, | ocean, a place where the | of Alaska | biological sampling devices; | | | down to the Abyssal Floor | geologic history, | bigger tsunamis may be | continental margin, | underwater positioning | | | Plain | record of continental | generated from slope edge | Bering Sea, e.g. at | | | | | climate | slumps, | the base of the | | | | | | | margin cutting the | | | | | | | margin cutting the | | | | Information Need/Gap | What | Why | Where | Technologies | Interest | |--|--|---|---|---|-----------| | Hydrographic, bathymetric | | Not mapped; not enough | Western and | Side scan, tide gauges; | ./ttorest | | nd tidal data - meán low and
igh water (Baird) | | resolution in existing maps;
Tidal data to establish
boundaries; how sea data
changes with events | northern Alaska;
Bristol Bay, Arctic
Basin, Bering Sea,
Bering Strait, Bering
Sea (data gaps
areas) | Backscatter processing, mapping | | | Bering Sea Fish Habitats
McConnaughey) | Bathymetry -
sediments, habitat;
hydrography; tidal
data; biology
(temporal) | Lack basic information;
Areas will not be looked at
by other organizations; high
variability habitat; Very
important spatial gaps;
Temporal gaps; e.g. near
shore, Bristol Bay was home
of most valued single species
in world at one time. Oil and
gas interest in the area.
Truly unknown undescribed
areas;; high value
commercial species | | What is relevant scale?;
Issues: uncoordinated,
overlapping mandates.
Classified data and getting
access to it; Ships of
opportunity as technology.
Interfarometry.;
multibeam; sidescan;
backscatter | | | atalogue the distribution and
bundance of the types of
pecies that are in the
nesopelagic zone, benthic
abitats that support
mportant ecosystem
omponents including fish and
are or special species and
ssential fish habitats | what is the
importance of these
features for
maintaining
biodiversity;
cataloging; features;
mapping | MPAs; fishery restrictions;
critical ecosystem;
resources; critical resource
of high trophic level
organisms (big fish, birds,
mammals) | continental shelf;
Gulf of Alaska;
Bering Sea; Chukchi
Sea; shelf edge and
basin of Gulf of
Alaska | bottom profiling
technologies; optics;
satellites; nets; tagging;
underwater visual
technology; PSATS | | | Gain knowledge and
understanding impacts of
essential fish habitats;
eandidate areas of protection | benthic habitats;
mapping;
photography;
inventory | role in supporting ecosystem spawning | Pribiloff Canyons;
between Aleutians
and shelf break | | | | Seasonal exploration | Biological,
geological,
cryosphere,
biological and
physical
oceanography, | Completely unknown and potentially very biotically important | Continental Shelf spawning area, Bering Sea (Bristol Bay, northern Bering Sea e.g. along the ice edge, central Arctic Basin, whole ice edge), Cook Inlet (issue other organizations working on it). | Icebreakers, submersibles,
remote sensing, full blown
submarines, multibeam | | | ea Ice in Bering, Chukchi
nd Beaufort Seas
Pawlowski) | Biology and physical
processes going on.
Ballena studies.
Increased fetch.
Change in migration
patterns. | Change in ice distribution. Climate response issue.; Major rookeries for pinnipeds and seabirds. Bering Sea is in an ecosystem crises. | Nearshore reefs
e.g. Camden Bay.
Along Arctic barrier
islands. Some of the
Bering Sea Islands
for coastal erosion. | Remote sensing whether airborne or other. Mapping tools. On vessels of opportunity. | | | What is the role of sea ice
over in structuring the
narine ecosystem; how does
his vary with latitude of the
dge; how does the ice cover
nk the Arctic to the Bering
ea | what organisms are
present and how
they vary between
regions?; ice
characteristics
(thickness, structure,
etc.); exchange with
water column | sea ice is believed to play a
critical role for production of
shelf ecosystems; predicted
to diminish; cultural asset | Chukchi Sea; Bering
Sea | ice-going vessel; remote
sensing - satellite; ice
moorings; autonomous
platforms | | | late Boundary - Strike Slip
ystem | mapping, water
column survey, id
and characterize;
Taxonomy | Possible coldwater petroleum seeps | | Cameras, ROVs, AUVs,
ADCP, multibeam | | | ntertidal Zones | Biodiversity,
taxonomy, ID and
characterize.
Archaeology. | Not documented. Remote nature, add value to other studies. | Aleutian Islands,
Islands in Gulf of
Alaska e.g.
Shumagins, Kodiak
Island Group;
Alaskan Peninsula | Via helos from ships,
Alaska Peninsula, standard
biological sampling, LIDAR, | | | Acoustic Monitoring | seismic acoustics;
fauna acoustics;
Marine mammals,
fish, migration paths | New way to look at ocean,
learn a variety of things | Aleutians, SE
Alaska, Aleutian
Arc, Bering Sea, | Hydrophones, observing system(s), | | | Information Need/Gap | | | | | let | |-------------------------------|-------------------------|-------------------------------|-----------------------|------------------------------|----------| | | What | Why | Where | Technologies | Interest | | ubmarine Seamounts | Evolution of | Unique ecosystems, centers | Southcentral Gulf of | | <u> </u> | | | seamounts. | of upwelling, unique species, | Alaska (Gulf of | technology (e.g. video to | | | | Circulation and | unique trophic systems, food | Alaska Seamount | speed up processing) Issue | | | | currents.: | webs | Province) e.g. Pratt- | | | | | ecosystems; deep | Webs | Welker Chain, | processing of video data. | | | | | | | | | | | water | | Patton Murray | High definition video. | | | | | | Chain, South of the | mutilbeam. | | | | | | trench (e.g. Adak | | | | | | | Island, Central | | | | | | | Aleutians, Atka | | | | | | | | | | | | | | Island). | | |
| raditional Knowledge | Western science vs | The value of the data sets, | Hada Villages in SE, | Interviews, archaeological | | | • | native observations. | extend the time series | Traditional grounds | tools, biological sampling, | | | | compare life histories | | of Hoonah Village, | multibeam, LIDAR, side- | | | | of animals | | Tlingit village, St. | scan sampling | | | | Of affilials | | | scarr sampling | | | | | | Lawrence, Northern | | | | | | | Bering Island | | | | Circulation Survey | subsurface current | Benthic organisms, | Western Alaska, | ADCP, moorings, remote | | | inculation survey | Subsurface current | | | | | | | 1 | distribution of nutrients | Nome, Bering Sea, | sensings, | | | | | | Chukchi Sea | | | | VWII and Later Human Sites | Location and | Environmental impacts, | Western Aleutian | Diving, side-scan, | | | | characterization of | history, need for potential | Islands, Kiska | multibeam, archive | | | | site, artifacts ; | cleanups; protect sites | Island, Duke Island | searching | | | | | cicariups, protect sites | | 3Car G III IY | | | | Effects on | | (SE AK), Attu | | | | | ecosystems and food | | Island, | | | | | chain | | 1 | | | | Pre WWII (Gold Rush ships) | Location and | history, protect sites | SE Alaska, Lynn | Diving, side-scan, | | | 16 AAAALI (QOIG KRISH SHIBS) | | matory, protect sites | | | | | | characterization of | | Canal | multibeam, archive | | | | site, artifacts; | | | searching | | | | Effects on | | | | | | | ecosystems and food | | | | | | | chain | | | | | | | | | | | | | ocation and understanding | determine location; | potential biohazard | Aleutians | hazard sampling | | | nazard dumps; | chemistry of material | | İ | techniques; underwater | | | haracterization | 1 | | İ | moorings | | | Continental Margin (shelf and | Bathymetry, | Arctic path for shipping. | North of Sag River, | Partnering w/ others, single | | | | | | | | | | slope) of the Beaufort Sea | navigation hazards, | Unknown biota | entire shoreline of | channel sidescan, | | | | biota | | Beaufort Sea, Cape | multibeam, fathometers in | | | | | | Lisbourne | shallow water, LIDAR, | | | Archaeological Information on | Sites of ancient | To determine if that was the | Fairweather Ground | Multibeam, ROVs, very high | | | | | | Tall Weather Ground | | | | Human Migration | villages, possible | major migration route for | | resolution side-scan | | | | migration routes, ice | humans | | "pseudo sidescan" | | | | records, | | | (backscatter), | | | Gas Hydrates | Interaction w/ | Two orders or more of | Deep Gulf of | Seismic profiling, sniffers, | | | ous riyurutes | | | | | | | | ocean. ID and | Methane (is it recoverable?), | Alaska, Beaufort, | gas profiling, sidescan | | | | characterize | more methane than other | North Slope, | | | | | communities | fossil fuels, | Chukchi, Wrangall | | | | | associated with | • | Island. | | | | | them. Distribution | | | | | | | | | İ | | | | | and location. | | | | | | dentify and catalogue the | what zooplankton | many birds and mammals | South Bering Sea; | biophysical moorings | | | rophic webs that support | are available for | spend winter in Bering and | Aleutian Islands | (winter); new sampling | | | pirds and mammals in the | species dependent | Aleutians, but know little | (wintertime) | technologies under high | | | | | | (AAILITELTIILIG) | | | | vintertime; look at what | on their food type; | about what they eat there; | İ | sea states | | | physical processes impact | water column | supports endangered | 1 | | | | heir system | biology | species; food web dynamics | İ | | | | * | (zooplankton); ocean | info | İ | | | | | physics; sampling | | İ | | | | MI | | About annual 100 to 2 | Obstate C D : | an adallar di ani | | | What are the abundant and | microbiology and | these organisms likely play | Chukchi Sea; Bering | specialized sampling and | | | mportant microbes and | micro-zooplankton | critical role in function of | Sea | growth chambers; | | | nicro-zooplankton of the | sampling | ecosystem | İ | microscopy | | | Bering and Chukchi Sea: Gain | 1 | = | İ | ' ' | | | nowledge of ecosystem | 1 | | İ | | | | | 1 | | İ | | | | nealth; long-term variability | | | | | | | nformation on microscopic | explore unknown | lack of understanding; | shelf, shallow water | microsampling; micro- and | | | nterfaces of chemistry, | micro- / nano- | changes affecting | | nano-technologies | | | | | | İ | o teermologies | | | nicrobiology (liquid-solid | environment; | ecosystems and ocean | İ | | | | nterface) | characterize it | productivity; role in | İ | | | | | 1 | producing biocompounds | İ | | | | | 1 | and enhancing biodiversity | İ | | | | Mesos de letele L. C. | | , | D-1 | Intellected and 1 1 1 | | | Vhere do high latitude | support for | vulnerability of birds, | Polynyas - St. | biological and physical | | | rganisms go to spend winter | designation of critical | mammals | Lawrence, Sereniki, | tools; benthic sampling | | | - | habitats | | St. Matthew | | | | leed data and information on | explore largest | one of largest fresh water | Beaufort Sea / | remote sensing; | | | | | | | | | | arge-scale circulation and | freshwater reservoir | reservoir capable of | Arctic Ocean | autonomous platforms; ice- | | | | 1 | influencing global climate; | 1 | going vessels, moorings | | | variability of Beaufort Gyre | | accessibility problem | | | | Emphasis Area: Bering Sea, Aleutian Arc & Trench, Gulf of Alaska (including seamounts, fjords, continental margin), Iced Areas "Standard" Partners - NOAA (OMAO, NESDIS, NOS, Coast Survey), NURP, NMFS, AFCE, NOPP, U of Alaska, Oregon State Univ, UNOLS Community, Alaska Native Science Communities, MMS, USGS, Prince William Sound Science Center, North Pacific Research Board, US Fish & Wildlife | Description | | | | | |---|--|--|---
--| | | Feasibility | Technologies | Available Assets | Key Benefits | | | | | | | | characterize sea beds; | high | | USGS; commercial;
NMFS | salmon disaster; fisheries issues | | bio and physical
systems; surveys;
currents; sediment
transport;
groundtruthing | | standard package;
multibeam; LIDAR of
seabed; multibeam;
imaging; video | | global ecosystem (high priority of Bristol
Bay) | | collecting tidal info.;
sampling;
groundtruthing | high | standard package; high
resolution; research trawls;
HDTV; moorings;
sampling; | standard partners;
fishing industry | characterize undiscovered areas; essential fish habitats | | | | grabs/corers; seasonal moorings | | | | | high | ROV; seafloor surveys;
current meters | standard partners;
bilateral explorers | undiscovered; understanding hazards; undisturbed habitats; | | surveys; sediment
trans port; biological,
physical oceanography;
climate history; benthic
biology; cold seep
environment | | | · | productivity of Bering Sea; bilateral exploration | | | | | LISCS AVO | undiscovered areas | | | 1 | | 0303, AVO | unuscovereu areas | | | | | | + | | surveys of structures on | high (though | deen vehicle canabilities. | IAMSTEC | characterize dynamic environment and | | Pacific Plate; deep
trench; seep
communities; biology;
slumps (sub landslides) | depth limit) | high pressure samplers;
deep tow; rock dredging | JANUSTEG | connecting to biological communities; | | sediment transport;
bedrock geology;
benthic biology; thermal
venting; physical
oceanography; | high (though
strong current
problems) | station keeping for ship & vehicle | | unique area; gateway thru Bering and
Pacific; understanding earthquake and
tsunami hazards; | | thermal vents;
structures; chemistry of
hydrothermal system;
vulcanology | high | vent samplers; acoustic monitoring | | undisturbed ecosystems | | benthic and physical oceanography | mod (strong
current
problems, tidal
range) | CODAR (new tool) | | | | thermal vents;
structures; chemistry of
hydrothermal system;
vulcanology | high | acoustic monitoring | US/Russia | | | | lots of
challenges -
darkness,
extreme temps,
ice. storms | | | | | Bering and Chukchi | 100, 310/1113 | | | | | survey migration of seabirds & mammals | low | wildlife tags; remote
sensing - satellite; | industry; Navy;
US/Canadian/Russian
Coast Guard; | economic significance of fisheries; | | | | AUVs; ice breaker ships | Native Communities; | migration behaviors knowledge of marine mammals; | | | systems; surveys; currents; sediment transport; groundtruthing collecting tidal info.; sampling; groundtruthing surveys; sediment transport; biological, physical oceanography; climate history; benthic biology; cold seep environment surveys of structures on Pacific Plate; deep trench; seep communities; biology; slumps (sub landslides) sediment transport; bedrock geology; benthic biology; thermal venting; physical oceanography; thermal vents; structures; chemistry of hydrothermal system; vulcanology benthic and physical oceanography thermal vents; structures; chemistry of hydrothermal system; vulcanology benthic and physical oceanography. | systems; surveys; currents; sediment transport; groundtruthing collecting tidal info.; sampling; groundtruthing surveys; sediment transport; biological, physical oceanography; climate history; benthic biology; cold seep environment surveys of structures on Pacific Plate; deep trench; seep communities; biology; slumps (sub landslides) sediment transport; bedrock geology; benthic biology; thermal venting; physical oceanography; thermal vents; chemistry of hydrothermal system; vulcanology benthic and physical oceanography thermal vents; structures; chemistry of hydrothermal system; vulcanology thermal vents; structures; chemistry of hydrothermal system; vulcanology benthic and physical oceanography thermal vents; structures; chemistry of hydrothermal system; vulcanology lots of challenges - darkness, extreme temps, ice, storms Bering and Chukchi survey migration of | systems; surveys; currents; sediment transport; groundtruthing collecting tidal info.; sampling; groundtruthing sampling; groundtruthing limit sampling; groundtruthing surveys; sediment transport; biological, physical oceanography; climate history; benthic biology; slumps (sub landslides) sediment transport; bedrock geology; slumps (sub landslides) sediment transport; benthic biology; thermal venting; physical oceanography; thermal venting; physical oceanography; thermal venting; physical oceanography which and physical oceanography current problems, tidal range) thermal vents; structures; chemistry of hydrothermal system; vulcanology benthic and physical oceanography thermal vents; structures; chemistry of hydrothermal system; vulcanology benthic and physical oceanography lots of challenges - darkness, extreme temps, ice, storms bering and Chukchi survey migration of seaberd; multibeam; inaging; video seabed; multibeam; imaging; video standard package; high resolution; research trawls; HDTV; moorings; sampling; grabs/corers; seasonal moorings resolution; research trawls; HDTV; moorings; sampling; grabs/corers; seasonal moorings ROV; seafloor surveys; current meters deep vehicle capabilities; high pressure samplers; deep tow; rock dredging deep vehicle capabilities; high pressure samplers; deep tow; rock dredging station keeping for ship & vehicle problems, wehicle vehicle station keeping for ship & vehicle vehicle vehicle oceanography thermal vents; structures; chemistry of hydrothermal system; vulcanology lots of challenges - darkness, extreme temps, ice, storms bering and Chukchi survey migration of seabirds & mammals | bio and physical systems; surveys; currents; sediment transport; groundtruthing collecting tidal info.; sampling; groundtruthing collecting tidal info.; sampling; groundtruthing collecting tidal info.; sampling; groundtruthing sampling; groundtruthing collecting tidal info.; sampling; groundtruthing sampling; groundtruthing sampling; grabs/corers; seasonal moorings high ROV; seafloor surveys; current meters bilateral explorers current meters bilateral explorers current meters bilateral explorers bilateral explorers current meters bilateral explorers surveys; sediment transport; biological, physical oceanography; climate history; benthic biology; cold seep environment depth limit) trench; seep communities; biology; slumps (sub landslides) sediment transport; bigh communities; biology; slumps (sub landslides) sediment transport; bigh pressure samplers; deep tow; rock dredgling communities; biology; strong current problems) vehicle biology; thermal vents; structures; chemistry of hydrothermal system; vulcanology benthic and physical oceanography problems, bigh can be problems, tidal range) acoustic monitoring complems acoustic monitoring complems; structures; chemistry of hydrothermal system; vulcanology benthic and physical oceanography problems, idal range) acoustic monitoring complems, ce, storms bering and Chukchi survey migration of seabirds & mammals low wildlife tags; remote sensing - satellite; Coast Guard; | | Information | | | Enabling | Partners / | | |---|---|--|--|---
--| | Need &
Approaches | Description | Feasibility | Technologies | Available Assets | Key Benefits | | 2 - survey of
bottom &
circulation of
perennially
covered ice areas | deep water | low | aircraft for cold weather | NSF, Arctic Logistics;
BASC (Barrow Arctic Sci
Consort); VECO Corp. | understanding climate variability; | | 3 - observation | spatial and temporal observation | mod | acoustic monitoring,
National Technical Means;
thermal imaging | | filling gaps in knowledge | | Gulf of Alaska | | | | | threatened species, sources of mortality | | 1 - fjords
(targeted
surveys) | deep water; high current
areas; ice face; rapid
deglacierized areas;
archaeology | high - deep
water, rapid
deglacierized
areas; mod -
high current
areas & ice face | ROVs; AUVs; HDTV;
remote sensing - satellite
(ASTER, LANDSAT 7) | cruise lines | fisheries; MPA issues; tourism - public interest | | 2 - outermost
continental
margin
(targeted) | outer shelf slope valleys;
high resolution surveys;
abyssal plains; physical
oceanography; hazmat
dumping; climate
history; biological
communities; cold seep
environment; gas
hydrates | high | multibeam; deep tows; gas
hydrates - seismic
reflection,
sidescan/backscatter,
water column surveys | various commercial
companies; Navy | undiscovered areas; characterizing unique
environments; understanding submarine
landslides / instability | | 3 - strike slip
plate boundary | locating cold seeps;
natural hazards; cold
water petroleum seeps;
neotechtonics | high | ROVs; basic surveying tools; standard package | Canadian Gov't (Earth
Science Sector);
Petroleum Corps | natural hazards; unique nature (chemical nature and corresponding biology) | | 4 - seamounts
(targeted
surveys) | benthic and pelagic
biology; biological hot
zones; history of
seamount; physical
oceanography (currents
change); undisturbed
sediment accumulation
on summits; upwelling
zones | high | ROVs; ADCP; detailed
mapping & sampling;
trawling gear (700m) | Navy; MBARI | ecology of undisturbed ecosystem, fisheries refuges/isolation | | Archaeology | | | | | | | 1 - Gulf of Alaska
(Cape Spencer to
Cape Suckling -
west of Juneau
to SE P.W.
Sound) - funnel; | broad survey; high
resolution survey | high - location;
low - recovery | multibeam side scan;
ROVs; human diving;
special equipment for
artifacts - lab facilities for
preservation & stabilization | museums; salvage org,
MMS | history; human interests | | 2 - inland water
S.E.; Aleutians;
Bering Coast; | WWII; gold rush;
whaling | high - location;
low - recovery | multibeam side scan;
ROVs; human diving;
special equipment for
artifacts - lab facilities for
preservation & stabilization | museums; salvage org,
MMS | history; human interests | ### West Coast Workshop | Worksheet A: Iden | tify Ocean Explo | oration Informat | ion Needs/Gaps | | | |---|---|--|---|--|----------| | Emphasis Area: O | cean Dynamics | and Interactions | ; | | | | Information Need/Gap | What | Why | Where | Technologies | Interest | | Knowledge of the deep sea
water column (largest biomass
on planet) | biota - what organisms
exist (distribution,
abundance, dynamics) | unknown, undiscovered, unexplored; evolutionary relationships; size and volume of habitat; unknown result of human impact; linkage of slope and shallow water; trophic linkage between protected and other species; carbon flux; linked to inorganic processes; link to climate change | bottom mixed layer to
sea floor; deep water
North Pacific on coast | imaging - HDTV & holographic; nested acoustics techniques; continuous capability; capturing particle flux; genomics on a chip | 21 | | Biological oasis hot spots | discover, inventory biota; explore; identify processes; find new areas | discover; biodiversity | seamounts, canyons,
upwelling; ocean frontal
zones; river plumes;
seafloor hydrothermal
vents | imaging - HDTV & holographic; nested acoustics techniques; continuous capability; capturing particle flux; long-term & long-standing observatories; coring; genomics on a chip; generation of sampling technology (give 100x more data); genetic markers on AUVs; remote sensing technology on AUV; real time capability; chemical sensor; PSATS; electronic tags; acoustics; acoustic mapping; ROVs; sampling systems; video; sub; long-range AUVs; sensors for gas analysis; higher resolution chemical sensors; long-term instruments that can survive in the canyon environments; temporal exploration; physical ocean modeling; genetic probes; insitu visualization; observation techniques; fiber optic observatory | 16 | | Habitat on nearshore (shelf
and slope); Archaeological
paleoclimate area | understanding of flows
of chemicals; fisheries;
understanding biological
hot spots; sediment
transport; physical,
current flow
interactions; discover
history influences;
understanding margin
marine boundary layer | intensive human impact;
link of chemistry and
biota | 0-1000m depth; 0-100m transport | generation of sampling technology
(give 100x more data); genetic
markers on AUVs; remote sensing
technology on AUV, etc; real time
capability; chemical sensor | 15 | | Plate scale to mesoscale
observatory; long-term
understanding of episodic
events | absorption of CO2;
long-term; needs
thorough mapping
effort; collaborative
effort; new ways to do
oceanography;
understanding fluid flux
productivity of
subduction zones;
sources of
interplanetary life | Scientific CNN; opens
temporal domain;
resolves limitations of
surface vessels;
interactive telescope into
inner space | observe 50-70km | fiber optic observatory | 13 | | Canyon systems, gulleys
(physical, chemical, biology
systems) | turbidity currents;
internal waves; bridge
from shelf to deep sea;
develop proxies of
variability over time in
sediments | cable routes; essential
fish habitats; biohazard
dumping; grocery run for
deep sea organisms | west coast; Big Sur
Canyon Complex | long-term instruments that can survive
in the canyon environments; temporal
exploration; physical ocean modeling | 11 | | Productivity of ocean in
euphotic zone | discover new members;
<20 microns (includes
viruses, parasites);
spatial structures
(scales); need balance
equation | HABs | euphotic zone; Central
Gyre; Monterey Bay | genetic probes; <i>Insitu</i> visualization; observation techniques | 10 | | Knowledge of the deep sea floor | biosphere at seafloor;
benthic community;
crust & microbial
communities; i.e. all
deep sea floor
communities | earth's history; proxies
to understand sediment
records; simultaneous
process documentation
over a decade opens the
door to millennium;
crustal processes
compared to other
planes; link to climate
change | bottom mixed layer to
sea floor; deep water
North Pacific on coast | Imaging - HDTV & holographic; nested acoustics techniques; continuous capability: capturing particle flux; long-term & long-standing observatories; coring; genomics on a chip | 9 | | Worksheet A: Iden | tify Ocean Explo | oration Informat | ion Needs/Gaps | | | |---|--|---|---|---|----------| | Emphasis Area: Od | cean Dynamics | and Interactions | | | | | Information Need/Gap | What | Why | Where | Technologies | Interest | | Pelagic animal movement and
orientation | how the populations
succeed; behavior
patterns;
interactions
with ocean structures;
use of habitat; range
and navigation | discovery and explore;
unknown human
impacts; stewardship;
ambassadors of ocean
life; physiological
adaptations to
understand and to add
to biomedical knowledge | Basin scale Pacific
Ocean; eastern North
Pacific Ocean; entire
water column | PSATS; electronic tags; acoustics; imaging | 9 | | Hydrates, fluids (seawater and gases): Crustal processes that affect fluid flow | determination of location and volume of hydrate resources; classification; chemistry; fluid flow; subduction zone; hydrothermal processes; microbial populations and dynamics; fluid pressure and quantification of flow | energy source; impact
on environment (climate,
carbon cycle);
geohazard/sea floor
stability; means by which
earth cools itself; how
fluids are forced from
crust | 300m-3km (maybe
more) depths;
emphasize below
1000m; EEZ;
outcroppings; plate
scale; active seeps;
middle of plates | acoustic mapping; ROVs; sampling
systems; video; sub; long-range
AUVs; sensors for gas analysis; sensors
for gas analysis; higher resolution
chemical sensors | 6 | | How to configure exploration will discovery | hen we don't know form (| of pay off; what will optimi | ze discovery; issue is large | r than NOAA; how to optimize rate of | | #### Crosscutting Ideas champion full utilization of underwater arrays fuller utilization of classifies technologies explore ways in which oceanography can be done - cooperate across groups (interagency) #### Comments rare species definition and few in number animation of data for science and education production of quantitative maps, real time maps data management: archival, servicing to public, presorting, relating databases, standard methods for management, cannot be too far removed from 20% of total effort how quickly data is available - measure of success; how much data is coming out handling of data sets "standard" package - definition from common approach terms plus dynamic positioning & bottom high resolution survey capability (not always needed for ops, ROV), sensors dependent upon expertise with mission, high quality communications & internet "potential" partners - educational outreach group, university (UNOLS), NMS, Navy, NOAA, NASA, NSF, Alliance for Coastal Tech (NOAA), USGS, USCG, NGOs | | dentify Strategies | to Address Priority | Exploration | Information Nee | eds | |--|--|--|---|--|--| | Emphasis Area: | Ocean Dynamics | and Interactions | | | | | Information Need &
Approaches | Description | Feasibility | Enabling
Technologies | Partners /
Available Assets | Key Benefits | | Knowledge of the deep se biomass on planet) | a water column (largest | | | | | | to mass on primery 1 - simultaneous surveys (AUVs), precision with ROVs | | high; labor intensive for water
column | image recognition
and software;
improving control
systems for ROVs-
adapt to situations;
software
development; flow
cytometers for
microbe levels
(refinement in
technologies);
higher flow
sampling for
midwater
communities | potential | know how ocean works;
discovery is guaranteed | | Biological oasis hot spots | | | | | | | 1 - targeted (but focused
and surveys
simultaneously) | close in seamounts then
remote seamounts;
survey triage of hot spots;
different tactics for each
hot spot | varies by hot spot | <20 microns
technology very
important; real
time capabilities;
anecdotal
fisherman reports;
tagging (PSATS);
"Ready 5"
capability | fishing industry
(Russians, etc.); MMS | commercial fisheries;
potential conservation areas;
biogenetics | | Habitat on nearshore (shel | f and slope): | | | | | | Archaeological paleoclimat | | | | | | | 1 - targeted | targeted anthropogenic
impacts; high definition
visual surveys; look for
arch. sites of previous
civilization; look for deeper
wrecks | high (but can vary by hot spot) | sidescan;
magnetometers;
sub-bottom
profiling; laser line
scan; range gating
system;
geochemical
measuring
systems; geology
system (porosity);
sediment transport
system
(suspension) | cultural resource organizations; Navy (NAVO); oil companies; museums; NGOs; National Cultural Archival Org; States Historical Preservation; tribes/islanders; ecotourism | understand part of ocean
directity most interact with &
human impact; reach new
stakeholders; connection to
public; conservation areas | | Plate scale to mesoscale | small scale perturbative | | | | | | observatory; long-term
understanding of episodic
events | experiments | | | | | | 1 - funnel; targeted; real | gyre scale | observatory - may not be
low feasibility. Only listed | large logistics;
huge
communications | telecommunication
industry; oil/gas
industry; Canada, | internationally unique; new paradigm of sampling in time and space | | time | | that way due to costs over the long term. | requirements | Germany, etc. | | | time | physical chomical biology | | | Germany, etc. | | | time | physical, chemical, biology | | | Germany, etc. | | | time Canyon systems, gulleys (| physical, chemical, biology
hyperpicnal flows;
observing systems for long
term; investigate submarine
rock flows | mod (difficult to catch events) | | cable companies;
USACE; CSO | understand how major
component of the ocean
works; history/origin of
canyons | | time Canyon systems, gulleys (systems) | hyperpicnal flows;
observing systems for long
term; investigate submarine | mod (difficult to catch events) | forward scatter
acoustic
techniques;
equipment
survivability cabling
systems; need
hardened sensors;
"instrumented | cable companies; | component of the ocean works; history/origin of | | Worksheet B: Id | dentify Strategies | to Address Priority | / Exploration | Information Nee | eds | |--|--|---|--|--|--| | Emphasis Area: | Ocean Dynamics | and Interactions | | | | | Information Need &
Approaches | Description | Feasibility | Enabling
Technologies | Partners /
Available Assets | Key Benefits | | 1 - funnel; survey | | high | new genetic
methods; new
techniques for
energy flow thru
life form systems;
genetic probes;
active fluorescence | Russia, Poland;
agriculture companies;
commercial fisheries;
remote sensing (NASA) | understanding health of oceans | | Knowledge of the deep sea floor | | | | | | | 1 - simultaneous surveys
(AUVs), precision with
ROVs | surveys via AUVs; sweeping
water column; detailed
survey then expand | high; labor intensive | image recognition
and software;
improving control
systems for ROVs-
adapt to situations;
software
development; flow
cytometers for
microbe levels
(refinement in
technologies);
higher flow
sampling for
midwater
communities;
navigation | potential | know how ocean works;
discovery is guaranteed | | Pelagic animal movement and orientation | how animals find
guideposts in the open
ocean; animals as ocean
explorers | large animals - high;
medium animals - mod;
smal animals - developing | PSATS, archival
tags, acoustic
network tracking;
active acoustic
tracking; ARGOS;
imaging systems | university; electronics
industry; Census of
Marine Life; fishermen
(recreational &
commercial);
conservation groups | establish biological hotspots
in ocean; identify common
mechanisms of movement;
conservation and protection
of important species | Comments: need more tech capable organization and facilities | Emphasis Area: C | Observation and Ma | appina | | | | |----------------------|---|---
---|---|----------| | Information Need/Gap | What | Why | Where | Technologies | Interest | | Continental Shelf | general baseline mapping
(high resolution), habitat
substrate, geo/bio/chem,
current, temperature, ID
and characterize | Need good habitat mapping,
documenting relationships
between bio and surrounding
habitat. Near shore is
important commercially and
recreationally. Need to
identify impacts to these
areas. | West Coast, existing protected areas, proposed MPAs, cable routes, heavily trawled areas, areas of heavy coastal/urban development. Same locations as above. Also untouched areas. | Standard regular remote sampling techniques, temporal/seasonal sampling tools. Higher resolution remote sampling; processing/visualization tools | | | Midwater | Species diversity; ID and characterize; food web; link between upper water and benthic water; how the midwater functions in this role; evolutionary relationships; geographic relationships; connectivity | Not much known, relation with upper water community | Gross global sampling (have
some info on Japan and
Monterey Bay) | Genetic tools; ROVs for filming, sampling and observing behavior; HDTV video very useful; establishing strobe frame photography at some time series sites to get understanding of change of abundance | | | Banks | mapping, subsurface information, sub bottom profiling, biosampling, currents, temperature, chemical description, cores to sample the microbial activity | Untouched communities to understand equilibrium before disruption; trying to understand how they evolved thru time (e.g. transient?, duration of settlement in any one spot.) Unique species w/ biochemical properties; Assessing connectedness among and between; Genetic fingerprinting of some of the species; Effects of exploitation | Cordell Banks,
Tanner/Cortez Bank,
Oregon Bank complex,
Southern California Border
Banks | Chemical sniffers, NMR, genetic fingerprinting, acoustic mapping, long term chemical sampling (e.g. osmosamplers) | | | Sea Mounts | mapping, subsurface information, subbottom profiling, biosampling, currents, temperature, chemical description, cores to sample the microbial activity | Untouched communities to understand equilibrium before disruption; trying to understand how they evolved thru time (e.g. transient?, duration of settlement in any one spot.) Unique species w/ biochemical properties; Assessing connectedness among and between; Genetic fingerprinting of some of the species; Effects of exploitation | Davidson, Guide, and
Pioneer Seamounts, and
Gumdrup and Taney
Seamounts; Brown Bear
and Cobb Seamounts;
Bowie Seamount Chain. | Chemical sniffers, NMR, genetic fingerprinting, acoustic mapping, long term chemical sampling (e.g. osmosamplers) | | | Canyons | mapping, subsurface information, subbottom profiling, biosampling, currents, temperature, chemical description, cores to sample the microbial activity | Untouched communities to understand equilibrium before disruption; trying to understand how they evolved thru time (e.g. transient?, duration of settlement in any one spot.) Unique species w/ biochemical properties; Assessing connectedness among and between; Genetic fingerprinting of some of the species; Effects of exploitation | Canyons: Big Sur Canyon
Complex, Pt Conception
complex; Juan de Fuca;
Rogue Canyon, Eel River
Canyon; Ouinalt Canyon;
Santa Cruz Canyon; So
American canyons (re:
strike slip transition). | Chemical sniffers, NMR, genetic fingerprinting, acoustic mapping, long term chemical sampling (e.g. osmosamplers) | | | Fracture Zones | mapping, subsurface information, subbottom profiling, biosampling, currents, temperature, chemical description, cores to sample the microbial activity | Untouched communities to understand equilibrium before disruption; trying to understand how they evolved thru time (e.g. transient?, duration of settlement in any one spot.) Unique species w/ biochemical properties; Assessing connectedness among and between; Genetic fingerprinting of some of the species; Effects of exploitation | Mendocino, Molokai. | Chemical sniffers, NMR, genetic fingerprinting, acoustic mapping, long term chemical sampling (e.g. osmosamplers) | | | Worksheet A: Ider | ntify Ocean Explora | tion Information N | leeds/Gaps | | | |---|---|---|---|--|----------| | Emphasis Area: C | bservation and Ma | pping | | | | | Information Need/Gap | What | Why | Where | Technologies | Interest | | Subduction Zones | mapping, subsurface information, subbottom profiling, biosampling, currents, temperature, chemical description, cores to sample the microbial activity | Untouched communities to understand equilibrium before disruption; trying to understand how they evolved thru time (e.g. transient?, duration of settlement in any one spot.) Unique species w/ biochemical properties; Assessing connectedness among and between; Genetic fingerprinting of some of the species; Effects of exploitation | | Chemical sniffers, NMR, genetic fingerprinting, acoustic mapping, long term chemical sampling (e.g. osmosamplers) | | | Deepwater corals | Locate, map, characterize
and ID; Assessment of
threats - existing and
emerging. Other species
supported by habitat. | Extremely cool, very old, contain excellent deep sea climate records (deep sea climate gradients), loaded with bioactive chemicals, biomedical applications, very diverse and economically important, at dire risk of elimination. | Rocky bottom areas; low
sedimentation rates, high
currents - below trawl
depth. 1-2 KM priority.
Monterey Canyon, Astoria
Canyon Flanks of
seamounts (see above). | Deep camera tows,
further development of
laser technology, lowlight
cameras in rough terrain,
slow moving steady AUVs | | | Ships (shipwreck) of importance. | mapping habitat,
multidisciplinary effort,
chemo/bio/geo | Environmental impact,
maritime history, exciting
topic, legal/regulatory
mandates | Workshop results and historical records. Determine location. Luckenbach (San Francisco), Montebello (off Cambria) possible tar issue, Pack Baronesc (entrance of Santa Barbara Channel) bulk cargo of copper sulfate. | Mapping technology,
chemical analysis,
shipwreck integrity tools | 4 | | Marine Archaeology/ Human
Habitat | Develop strategy on where
to look, location, photo
documentation, controlled
removal, habitat, climate | Would answer major
questions about inhabitants
of west coast of North
America, would answer
timing questions, Heritage
Data | Develop strategy on where
to look; Channel Islands,
140 m below sea level (old
coastal level), Santa
Barbara Channel, Baja
California | Mapping of shorelines,
light subbottom profiling,
laser linescan technologies
to direct sampling, coring
technologies | 2 | | Use of pelagic and benthic environments by economically/ecologically important species | Life history, migration patterns, habitat, population, distribution and abundance, environmental properties | Ecologically and economically important; exploited; need to know how they use their environment in order to get accurate assessment of them and to protect them if need be. | | Basin wide, continental
shelf, oceanic, existing
protected areas, also see
offshore productivity list,
fronts and eddies | Ę | | Use of pelagic and benthic
environments by Rare
Species | Life history, migration
patterns, habitat, distribution
and abundance, population,
environmental properties | Little known about them,
sense of urgency, they
engender energy and
excitement from public, | Same as above | Satellite tag, data storage tags, satellite remote sensing (benthic and passive), acoustics (passive and active), genetic tools, aircraft, human observation | 6 | | Microinvertebrate
assessments e.g. kelp forest
assemblages and soft habitat;
microbial ocean | Assemblages; Interactions;
Predator/Prey Relationship | Huge educational
advantages; Community
structure and function; Form
base of food assemblages;
Unknown; New Species | , | Fiber optics, cameras,
video, basic
archaeological sampling,
species identification | | | Microbial | Microbial assemblages,
characterization, taxonomy,
role they're playing in larger
ecology; bio/geo/chemical
processes; bioactive
compounds | Biotechnology; human
health; (e.g. blooms); cause-
effect; pollutants (tracking) | Could go anywhere and make fundamental discoveries i.e. polar oceans, polluted and non polluted
locations to compare microbial assemblages; Throughout water column including the substrate | In situ genetic sampling; | 8 | | Seeps | mapping, subsurface information, subbottom profiling, biosampling, currents, temperature, chemical description, cores to sample the microbial activity | Untouched communities to understand equilibrium before disruption; trying to understand how they evolved thru time (e.g. transient?, duration of settlement in any one spot.) Unique species W/biochemical properties; Assessing connectedness among and between; Genetic fingerprinting of some of the species; Effects of exploitation | between Heceta Bank and
Hydrate Ridge; along alluvial
(sp?) washout of Monterey
Canyon. | Chemical sniffers, NMR, genetic fingerprinting, acoustic mapping, long term chemical sampling (e.g. osmosamplers) | · · | | | ntify Ocean Explora | | | | | |--|---|--|---|---|-------------------------| | | Observation and Ma | 11 0 | | | | | Information Need/Gap | What | Why | Where | Technologies | Interest | | High Temperature
Hydrothermal Environments | | Important for understanding
origins of life on Earth | West coast of North and
South America (fragments
of the Farallon Plate) -
interaction of a ridge with a
continental margin),
opportunity to look thru
genetic mutations, how
long ago were things
isolated? | ROV sampling tools;
physical oceanographic
sensors; Larval sampling
tools | Ć | | Chemistry, Physics, Geology | inputs/outputs cycling | Residence times of certain molecules and chemicals; ID sources/sinks; understand effects of human introduced substances; better resource management;; better understanding of time based on signature left by processes; understand processes on other planets | Needs to be done in the context of the other Needs identified | In situ chemical sensors;
satellite data; remote
sensing; | Integrate | | NOTE: Chemistry, Physics, | NOTE: OE should analyze globa | ally where seeps form (before | | NOTE: need new technolo | gy (and cost | | Geology need should be integrated as part each need | NOTE: OE should analyze globally where seeps form (before shipping out) | | | effective tools) for covering
large areas for energy sour
technology that goes deep,
unmanned technology - be
zone. | ces and need especially | | Technology Needs | Better data visualization tools; I
Technology that supports adapt | | | | | | NOTE: use part of 10% slated for education for visualization tool development. Info is only useful if it can be delivered. | NOTE: Ferret out traditional knowledge as way to discover what may have already been seen | NOTE: Reenact historical expeditions for educational purposes | NOTE: Reenact historical expeditions for educational purposes | NOTE: Jacques Cousteau
Formula | | | NOTE: more system
examination of marine
taxonomy through genetics | NOTE: Other data sets that can contribute to these needs | | | | | # Worksheet B: Identify Strategies to Address Priority Exploration Information Needs Emphasis Area: Observation and Mapping Standard Package - add CTDs to original list Standard Partners - NSF, NURP, ONMS, NMFS, Fish & Game, Oceanographic Institutions, Universities, Private Foundations, Museum/Aquaria, Sea Grant, Private Industry, Navy, USGS, NASA, MMS, Intl Partners, state geological survey, SHPO, Canadian counterparts, Mexican counterparts, | Worksheet B: Identify Strategies to Address Priority Exploration Information Needs | | | | | | |--|---|-------------|---|--|--| | Information Need &
Approaches | Description | Feasibility | Enabling
Technologies | Partners /
Available Assets | Key Benefits | | Continental Shelf | | | Standard Package - ROV,
Sub, multibeam,
bioacoustics tech, ADCP,
selsmic profiling, remote
sensing, observatory
approach | Std Partners-states,
sanctuaries, NOS, NOAA
hydrographic program | Scientific: delineation of habitats, base mapping, basic understanding of benthos, substrate characterization Industry: mineral deposits, new resources, resource evaluation, biotech Outreach: "backyard", educational component (student & public), visualization benefits, involve public, entire community Conservation: sustainability, rational decision, biggest info gap | | Funnel | Benthic | | | | 00 01 | | Targeted | MPAs, proposed MPAs, cables, then go observe | | | | | | Productive Offshore Areas | | | | | | | - | | | | | | | Funnel | Survey-go down and explore | High | Std Package - larger
vessels, backscatter data,
observatory tech
(observation approach),
chemical sniffers, NMR,
collecting tech, genetics,
real-time processing,
time-series revisits | STD Partners, no states, | Scientific: same as continental shelf, processes and interactions among organisms Industry: better resource planning Outreach: open new world, great discovery opportunities Conservation: planning, resource management, untouched environment, defacto protected areas | | Targeted | Use existing data to make choices then survey and go down | High | | | | | Observation | Time series observation
(many instruments), time
lapse camera to observe
biota over time | Medium | | | | | Partner w/ existing assets (opportunistic), Teaming | "piggyback" off existing assets and vessel | High | | | | | Midwater Mobile
Observation | AUVs/ROVs to remotely survey then sampling | High | STD Package - suction
samplers, insulated
compartment,
observation & tracking
technology, large
samplers (new tech),
collection tech, AUVs that
follow, critters (new tech) | STD Partners - HBOI,
Canadian ROPOS, MBARI,
JAMSTEC (Japan),
National Geographic
Society, Discovery, MBA,
aquaria | Scientific: important to carbon cycle, lots of species unknown to science, unknown contribution to food web Industry: app of new tech Outreach: topic of interest for general public, huge gee whiz factor, same as before Conservation: dumping regs | | Moored Observation | Fixed position observation | Medium | | | Ĭ | | Tracking
Critton Com | Tag and Monitor, lifecycle | | | | | | Critter Cam | Place camera on critter | High | | | | | Information Need & | dentify Strategies | | Enabling | Partners / | | |-------------------------|---|--------------|---|---|--| | Approaches | Description | Feasibility | Technologies | Available Assets | Key Benefits | | Marine Archaeology | | | High Res Imaging, Side-
Scan, STD Package,
Magnetometer, removal
technology tools, laser
imaging, saturation diving | Insurance industry, EPA,
Coast Guard, ONMS,
DOS, DOD, States,
National Geographic,
Discovery, Salvage
Industry, (Ole Varmer -
NOAA NOS Shipwreck
Attorney) | Scientific: heritage insight, impact on environment & risk assessment, human occupation of NA Industry: salvage Outreach: tremendous potential Conservation: mandate ID, protect and preserve | | Targeted | Historical
records/archives,
traditional knowledge,
pick sites, document &
remove | High | | | | | Funnel | Map (paleo shoreline),
pick sites, doc & remove | Low | | | | | Opportunistic | Look at mapping info
from other missions then
go to sites | Med-High | | | | | Microbial Biology | | | Moorings, AUVs, sampling
tools, smaller vessels,
genomics, ROVs & HOVs,
chemical analysis tools | Biomedical industry, EPA,
Fish and Game, local and
state health depts,
Surfriders | Scientific: huge oppty for fundamental discovery, bioactive compounds, health in the coastal zor Industry: seafood, biotech, invasive species human health, biotoxins
Outreach: origin of life, challenge for outreach, conceptual more than visual Conservation: counteracting bioterrorism | | In situ Sampling | In situ sampling and genomic identification & chem | High | | | | | In situ Cytometry | Particle counter for small
particles - size fractions | Med-High | | | | | Bioluminescence | cameras - is there a good proportionality ratio that is pretty universal. | High | | | | | Pelagic & Benthic | Ecologically/economically species | | CODAR, STD Package,
Tag tech Critter cam,
acoustic processing tech,
LIDAR | STD Partners, NPS, Military, biogeochemistry academic community, intl partners, Stanford Hopkins Marine Station, Census for Marine Life, MLML, Packard Foundation | Scientific: basic
knowledge of behavior,
migrations and how they
use their environment,
resource management
Industry: sport fishing,
small business
Conservation: need to
know more to protect
them | | Data Storage Tags | Track location of critter | High-Med | | | | | Acoustic Tags | Beacon to uniquely ID individual | High | | | | | Critter Cam
Fargeted | Attach critter cam
fronts/eddies - use
remote sensing to ID
areas | High
High | | | | | Passive Acoustics | Listen and observe sounds | Medium | | | | | Airborne Sensing | LIDAR to monitor,
observe, track fish | Medium | | | | | Natural Tags | Otolith-
microstructure/microche
m to ID their source/to
track them/ageing | Med-High | | | | # North Atlantic Workshop | Information Need/Gap | | | | | | |----------------------------|--------------------------|--|--|-------------------------|--| | | | Why | Where | Technologies | Intere | | Understand Distribution & | stems, community | Not currently known, new biota, are | Canyons, slopes, cold seeps, | Standard set of | | | Functional Redundancy | ns | there common rules governing | seamounts, the abyss, fishing banks, | methods - (see | | | Between Communities of | | these communities. To be able to | oil seeps, hot vents, cold seeps, and | Technologies list | | | Organisms | | develop first principals on how | on continental shelf - banks and | above) | | | 9 | | communities are constructed. In | basins. Canyons along NE and West | , | | | | | order to advise decision makers in | Coast. NE Seamounts and West Coast | | | | | | | | | | | | | areas where there is little data. | seamounts; South America. | | | | | | Automatic education tool. | | | | | Areas of Abrupt Bottom | Abundance, diversity, | Tight coupling to water column, | Seamounts (any seamount within our | Refine the mapping, | | | Fopography. | community change, | high flow, high productivity in | region e.g. Bear, Physalia, Mytilus, | multibeam, AUVs in | | | | new species, turnover, | benthic and epibenthic | Picket); any offshore ledge, canyon | high flow situations, | | | | refuge community, | communities, fish communities, | heads e.g. Oceanographer, | SCUBA, standard | | | | patterns | rapid community change in terms of | | tools | | | | patterns | | Baltimore; northern edge of Georges, | 10013 | | | | | abundance and diversity. | | | | | | | | in coastal zone where there is a steep | | | | | | | channel among islands; gullies; ledges | | | | | | | e.g. Gulf of Maine ledges, Stellwagen | | | | | | | Bank, Jeffreys Ledge, Cashes Ledge | | | | iving Marine Resources | ID & characterize | Commercial activities expanding | Unexploited areas, unsurveyed areas, | Standard technology | | | aving marine resources | | | slope greater than 500 m, seamounts | Standard teermology | | | | patterns | into this region and we have little | | | Ī | | | | knowledge about these areas | (see above), Mid-Atlantic Ridge | | | | Exploring Species | Physical, biological, | Better understanding of | Similar to "Understanding | Standard Tools | l | | Interactions w/ Physical | ecological properties | communities for management | Distribution" need and "Areas of | | ĺ | | Environment | that govern these | purposes | Abrupt Bottom Topo" need; also | | l | | | locations, patterns | | Fronts and gyres, and warm core | | 1 | | | , , , ======== | | rings | | 1 | | Study Transitional Areas | Species distribution and | Very little information available that | Georges Bank, Cape Hatteras, 350m | Standard Tools | | | Between Biogeographic | | | isobath, any biogeographic breaks | Standard 10015 | 1 | | | ranges; species | is not broad scaled; what regulates | isopatri, ariy biogeographic breaks | | l | | Areas & Shelf Slope | dynamics, tropic | them? | | | | | Regions | interaction, invasives, | | | | l | | | patterns | | | | | | cosystem Engineers and | Abundance, location, | Ecologically important, | For corals: shelf break, canyons, | Standard plus time | | | oundation species (corals, | diversity, new species, | management conservation issues, | edges of basins, seamounts, deep and | | | | ile fish) | establish patterns | few species have effects on many | inaccessible; For Mussels: Grand | Series observations | | | ille fish) | establish patterns | lew species have effects off marry | | | | | | | | Manan Basin, upper slope | | | | | | | environment | | | | Bioprospecting | Biotech industry | New products from the sea, human | Areas of high diversity, abrupt topo | Bioprospecting | | | | | health, industrial processes, quality | changes, deep within our region and | technology, standard | | | | | of life | tropical, | sampling technology | | | | | | | that capture and | | | | | | | keep specimen alive | | | Novel Feeding | | Unknown and could be major | Coastal regions near algal beds, | Sampling & stable | | | | | | | | | | Relationships | | sources of nutrition; discover new | offshore basins, depositional | isotope analyses for | | | | | linkages | environment, marine mammal | food pathways; | | | | | | hotspots | remote sensors for | | | | | | · · | marine mammals; | | | | | | | Critter Cam | | | Shipwrecks (5-10K off New | Location ID & | We know little about historical | Close to shore; fishing banks | Magnetometer, | | | | | | | | | | England) | characterize | technology; education and public | (Georges Banks, Jeffreys Ledge, Gulf | archival | | | | | relations, human history | of Maine, shipping lanes - close to | technologies, AUVs | Ī | | | | | shore, "right down the list" | | | | Submerged Prehistoric | Location, ID & | Same as above | Shallower than 120m isobaths, near | Geologic mapping, | l | | Sites | characterize, which are | | major drainages, coastal embayment, | coring, sub-bottom | l | | | still intact, | | areas of intense fishing activity | profiling, side-scan, | Ī | | | paleogeography, paleo | | a second second | magnetometer, AUV, | l | | | communities, paleo | | | Also local knowledge | l | | | biological assemblages | | | , 1130 local Kilowicuge | 1 | | Valagia Dacino - C | • | Don't know what at | Dougned shalf karada a | Culama or - 11-1 - DOM | | | Pelagic Realm - surface to | What's there? Species | Don't know what's there | Beyond shelf break e.g. | Submersibles, ROVs, | 1 | | deep sea | diversity issues, | | Oceanographer Canyon and south | acoustics, sampling | l | | | location, ID and | | | tools to collect | l | | | characterize, function, | | | gelatinous | 1 | | | what's there to exploit | | | organisms | l | | | & conserve, patterns | | | , | 1 | | Observing Episodic Events | Short-term events - | Non commercial activity, not done, | MPAs, abrupt bottom topography, | Camera, observation | 1 | | Rare Species e.g. storm, | frequency, strength, | understand processes, synergy | areas representative of a range of | technology | l | | olooms | | anderstand processes, syntergy | | teerinology | l | | DIOOIUS | intensity, impact, | | topographies e.g. ledge vs. flat | | l | | | magnitude, compare & | | bottom; e.g. Gulf of Maine, marine | | 1 | | | contrast | | mammal habitat, | | <u> </u> | | Observing Rare Species | For fish & marine | Fish community diversity, species | MPAs, fish aggregation areas e.g. | Cameras, | | | 3 | mammals: migratory & | extinction, sentinels of change, | Stellwagen Bank, ledges, fishing | observation | Ī | | | threatened species e.g. | invasion, insight into species | grounds, plane used by marine | technology | l | | | | | | technology | l | | | location of bottleneck | dispersal, | animals | | l | | | dolphins, unusual | | | | l | | | spawning, general | | | | 1 | | | behavior | | | ĺ | l | | Ion Biological Resources | Minerals, oil & gas, | Valuable resources, data sharing, | U.S. EEZ | Archive data | l | | note: this should not be | hydrates, location, | (sources of info) | 5.5. 222 | , ornvo data | 1 | | he focus of OE) | | (Sources of fillo) | | | l | | DE TOCHS OF UET | occurrence, stability, | | I | 1 | I | | 10000 01 02) | mixed aggregate | | | | | | Information Need/Gap | What | Why | Where | Technologies | Interest | |--|--------------------------|---------------------|---|--------------|----------| | Seamounts | Systematic documentation | Not well documented | All seamounts e.g. New England seamount chain | Standard | 6 | | Submarine Canyons | Not well documented | Not well documented | All major canyons e.g. Georges Bank canyons and mid-Atlantic canyons e.g. Oceanographer, Veatch, Baltimore, Norfolk, and Wilmington Canyons; Pueblo village communities and the canyon axis, boulder fields, slip stone outcrops | Standard | 6 | | Ledges | Not well documented | Not well documented | Jeffries Ledge, southern Cashes
Ledge, Fippennies, Platts, all along
the coast of Maine e.g. smaller coastal
ledges |
Standard | 6 | | Banks | Not well documented | Not well documented | Stellwagen & Georges Bank,
Nantucket Shoals, Tillies & Browns
Banks, Banquero & Emerald Banks | Standard | 6 | | Basins | Not well documented | Not well documented | East & west Tillies Basin, Georges,
Jordan, Wilkinson & Stellwagen Basins | Standard | 6 | | Abyssal Plain | Not well documented | Not well documented | South of Oceanographer & east of
Norfolk Canyon | Standard | 6 | | Slopes (600 to 4000 ft) | As above | As above | Slopes adjacent to ID canyons or
seamounts | Std | 6 | | Gravel Windows -
sediment disturbed &
gravel exposed | As above | As above | Stellwagen Basin | Std | 6 | | Protected Paleo Shorelines | As above | As above | South of Long Island & Nantucket;
Gulf of Maine, Weymouth | Std | 6 | | Gravel Cobble Bottom -
continuous features vs
discrete | As above | As above | Corsair, Oceanographer, &
Hydrographer Canyons, Stellwagen &
Georges Bank, Great South Channel,
Jeffreys Ledge | Std | 6 | | Channels | As above | As above | Great South Channel, Northern
Channel | Std | 6 | | Glacial Scoured Areas | As above | As above | Northeast Stellwagen Bank, Jordan
Basin | Std | 6 | | Shipwreck Aggregation
Sites | As above | As above | Nantucket Shoals, Hatteras,
Graveyard of Atlantic, Stellwagen
Bank, Boston Harbor entrance, Long
Island Sound, Buzzards Bay,
Narragansett Bay, entrance to
Chesapeake Bay, outer Cape Cod,
Casco Bay, & New York Harbor | Std | 6 | Issue: How do we get access to existing data specifically for submerged archaeological sites! John Fish, American Underwater Search and Survey, most extensive submerged arch site data. Need to work with them e.g. data coordinator to look across exploration data to see how it would be useful to others. Issue: when do you not let the public know about submerged archaeological sites? Issue: Use charts to ID blank areas that have been unexplored. Issues: Seafloor topography - mapping should be derivative of exploration rather than the focus; work with other NOAA offices; multi-beam area for multiple exploration efforts Issue: Storing of data Issue: Resource mapping should be in public domain Notes: #6 should be discussed in the context of these other information needs. ## Worksheet B: Identify Approaches to Address Priority Exploration Information Needs Deep "Standard" Package (1): Class I/II Vessel with Acoustic Mapping; Dive Capability (ROV/AUV/Submersible) with Imagery/Video and Sampling Equipment; Precise Positioning System; Nav Mapping Tech; Coastal Standard Package (2): Class III/IV Vessel; Wet Diving Chamber/Compressor; DMT; Dive Master; Acoustic Mapping; Side Scan; Precise Positioning System; Nav Mapping Tech "Standard" Partners | Information Needs Information Need - Approaches | Description | Diale | Enabling Technologica | Dortnore / Available | Voy Bonofito | |---|--|---|---|--|--| | | Description | Risk | Enabling Technologies | Partners / Available
Assets | Key Benefits | | Ecological/Biological Group (1) | | | | | | | Transect Approach | Large Group Set Sampling
Standards (includes ability to
document serendipitous),
look in new places, choose
sites based on biogeo (lat &
between oceans), survey
along mega transects, multi-
beam maps, sampling all
along transect | Low | Coastal & deep packages,
near real time satellite
imagery, coring, suction
sampling, digital still &
digital/HD video, laser
scaling, stereoscopic
video, new applications of
existing technologies,
sidescan or sector scan
sonar, dredge & trawl,
laser line scan | Std partners, academia,
NMFS, NURC, WHOI,
DOI, Kokes, Navy,
industry e.g. biotech | Scientific: pattern & distribution of tax & biological diversity; biogeography Industry: new resources, biotech products Outreach: mega big bang vs. targeted; web; circulation development Regulatory: new species; conservation targets; new MPAs | | Targeted | Feature based approach; | Low | Near real time satellite | | | | Time Series Observations | sample at selected sites Seasonal based observation transects, obs station taking temporal readings | Low | Imagery Obs tech that observe bio prop in addition to other ocean prop, cameras to monitor species, near real time satellite imagery, std oceanographic sensors, recruitment collectors, acoustics (passive & active), digital imagery, AUVs w/ sonar, ADCP | | | | Survey | Broad based remote sensing
to select site; then same as
others | Low | Satellites, Coastal & deep packages, near real time satellite imagery, coring, suction sampling, digital still & digital/HD video, laser scalling, stereoscopic video, new applications of existing technologies, sidescan or sector scan sonar, dredge & trawl, laser line scan | | | | Submerged Archaeological Sites (2)
Funnel | Broad based surveying; | Med | Coring; trenching; | Academia; Naval | Scientific: location of | | | choose sites; remote sensing, dive/ROV, sampling | | sampling tech; coastal std
pkg or deep depending
upon location;
magnetometer; important
to have; nav technology;
sidescan and sector scan
sonar, subbottom
profilers, AUVs/ROVs,
SCUBA/mixed gas, laser
scan, digital mosaics, 3D
imaging w/ sonar | | significant sites;
distribution models
Industry: cleared
areas for cables;
pipelines; dredging;
fishing; museum
collections
Outreach: significant
public interest;
educational possibilities
Regulatory:
federal/state agency
mandates; MPAs | | Targeted | Use existing knowledge including data mining (examine multibeam data), obs w/ remote sensing, dive/ROV, sampling; fishermen (hang sites) | Low | | | | | Piggybacking | Tagging along w/ existing expeditions, same as above, impt to have archaeologists on board | Depends
on location
(possibly
M) | | | | | Pelagic Realm | | | | | | | relauld Kealiti | | | | | | | Worksheet B: Ident
Information Needs | | | | | | |---|--|------|--|--------------------------------|--| | Information Need - Approaches | Description | Risk | Enabling Technologies | Partners / Available
Assets | Key Benefits | | Use all #1 approaches | | | Std Pkg, sampling gelatinous orgs, these tools on ocean platforms so they are full ocean accessible, sfc obs techs (indl night vision approaches), CTD, ADCP, profilers (water column-AVPPO), in-situ chem sensors | MBARI; HBOI (biolum) | Same as #1 Scientific: behavior patterns (critter) Industry: biotech Outreach: video of critter cam & gelatinous orgs Regulatory: MMPA, highly migratory species | | Bioluminescence | Use biolum to determine distrib & abundance of different species | Low | | | | | Critter Cam (small # of animals) | Use of camera on species | Med | | | | | Tracking | Tracking organisms | Low | Acoustic telemetry, air interface tech | | | **Issues:**Count stars & compare groups Infrastructure for data collection & distribution #4 = Research | Worksheet A: Identify O | What | Why | Where | Technologies | Interest | |--|--|--|--|---|----------| | Knowledge of Near Shore environments | Inventory, | Most regulation oversight | Coastal New England | Shallow water | 13 | | Nioweage of Near Store environments | characterize Measure,
habitats, bathymetry,
Bio/Geo/Chem,
Archeology | ů ů | Coastal New England | mapping, Sediments,
Remote Sensing, in
Turbid water | 2 | | Regional Archaeological Assessment; Cultural
Resources, Chronology Site I.D. | Distribution of
Wrecks; Structures;
Aircraft, Items of
cultural impact, Dump
sites Identify all
cultural resources with
in a region. | Many sites are not identified;
Environmental impacts;
Human activity on the world;
Chronology: Prehistoric,
Historic, Current | Regional Assessment
Sampling strategy
needed (sites with a
range of maritime
landscapes;
Regulation | High
Resolution
Survey - SUBs/ROVs
/AUV's; magnetic
Acoustic sensors | 13 | | Knowledge of Gas Hydrates Provinces | Process of Gas
Hydrates potential
resources Effects of
gases on
chemosyntheic
communities, Climate
Impacts, Slope
Quality | Impact on Global Climate;
Impact on Habitats; Safety -
Tsunami, bottom mounted
cables | US EEZ; Hudson
Canyon Region, (fiber
Optic Hub) | Submersibles ROV's
Sampling Methods | 12 | | Need for increase expertise in Taxonomy of marine resources | National emphasis on
taxonomy; Career
field | Identify Interaction between
Taxonomy | No specific regional focus | Technology can enable
but its policy based -
Human resources;
presentation formats | 12 | | Knowledge of impact of Seamounts on ocean dynamics; Also other abrupt topography | Ocean Currents,
Ecosystems,
Biogeography,
Biodiversity | Impact on Fisheries health,
Fundamental dynamics
needed, role as biogeographic
"stepping stones" Record of
climate change in deep Corals | Bear Mount, New
England Seamount
chain; Mid Atlantic
Ridge; Cashes Ledge;
other small features | Sub/ ROV's/ AUV's
Video Imagery,
Sampling Systems;
Acoustic Mapping | 11 | | Character of Deep Water Archaeological sites | Wrecks; structures;
cultural resources;
Priority to older
targets; local biota | Public Interest; Education;
Historic Value; Regulation;
Relationships to Habitats;
Ecological Impacts; | Target identified by
broader area of
survey - Virginia
Capes; | Deep water sub's
ROV's / AUV's /
Imagery & Video;
remote manipulator;
magnetic | 9 | | Distribution of migration & abundance of
Large, highly mobile biota | Marine Mammals;
Giant Squid, Other
Unknown species,
Large Deep water
Sharks; | Lack of Current knowledge,
Public Interest, understand
biodiversity & role in
Ecosystem; Policy
(International & Domestic) | Beyond Continental
margin | Survey Technique;
Tagging & Tracking;
Acoustic Imaging,
AUV's Imaging | 9 | | Deep Pelagic Realm | Characterize, Biology
Dynamics | Largest Ecosystem, Not sampled much | Sea Mount & Canyons
Along the Continental
shelf Greater 1000
meter & meso | Deep Submersibles,
obs on a broader
scale, AUV's; Acoustics
Imaging, chem, Bio
Sensor | 7 | | Knowledge of Deep Benthic Community | Characterize, Biology,
Geology, Bottom
Interactions, Ecology
Dynamics | Need to ascertain anthropogenic impacts; not well known, | Topographic feature of interest | Deep Submersibles,
obs, AUV's; Acoustics
Imaging, chem
Sampling Techniques | 7 | | Knowledge of existing sources of Baseline knowledge | Data Mining | Establishes level of baseline knowledge | All | Data Mining
technology; Intelligent
Agents | 7 | | Knowledge of Submarine Canyons | Transport mechanism,
Habitat Diversity,
Sediment Transport;
nutrient transport | Fisheries Impacts;
Characterize Pollution
Impacts, Impact on habitats
Role of in Carbon cycling;
Terrestrial impacts | Continental Margin;
Hudson Canyon;
Lydonia Canyon;
Varied
Geomorphology;
Gradient of Human
influence | Sub/ ROV's/ AUV's
Video Imagery,
Sampling Systems;
Acoustic Mapping | 6 | | Knowledge of physical & biological processes
near fronts; Eddies, Warm and cold rings | Intersections between
layers; Relationships
to biota; Air-Sea
Patterns / Interactions
Impact of bottom
boundary | Science Value; Impact on
Fisheries; Lack of knowledge
on Nutrient Sediments
Transport; Impact on Cultural
Resources & benthos | Gulf Stream;
Labrador; Gulf of
Maine; Long Island
Sound | Remote Sensing; Fixed
Sensors; Sensor
Arrays; AUV's | 5 | | Distribution migration & abundance of
Gelatinous plankton | Pelagic Plankton,
Vertical migration
patterns | New Species Identification, It
is the dominant Biomass;
Fisheries Impact, Evolution
Knowledge | Seamounts; Canyons;
Along Shelf margin | Sampling Technology,
AUV's | 5 | | Knowledge of Deep and or Cold water Corals | Biodiversity,
Distribution habitat | Fisheries Impacts; New species identification; Role in Ecosystems; Possible records of climate changes | Bear Seamount,
Oceanographer
Canyon, Lydonia
Canyon, Nova Scotia
& New Brunswick | Sub/ ROV's/ AUV's
Video Imagery,
Sampling Systems;
Acoustic Mapping | 4 | | Knowledge of Physical Processes related to geomorphology | Mass-gravity
movement; Turbidity
flows; Hydrate beds;
slope instability;
chemical analysis | Understand canyon formation
processes, safety (geo-
hazards) habitats, (*Partner
with USGS) | US Continental
Margin, Hudson
Canyon region, | Sub/ROV/AUV
Imagery, Seismic
Survey; MCS; Acoustic
Mapping | 4 | | Information Need/Gap | What | Why | Where | Technologies | Interest | |---|--|---|---|--|----------| | Knowledge of impact of Fishing on Ocean
Regions | Health of Benthic
Habitat; Census of
Marine Life;
Archeological Impacts;
History of technology; | Regulation; Public Interest;
Impact on other Ecosystems;
Fisheries Management; Lack
of Info on Deep Benthic Fish;
Discover the role in habitat
information | Grand Banks, Georges
Bank; Gulf of Maine;
Area where fisheries
are expanding into; | Sub/ ROV's/ AUV's
Video Imagery,
Sampling Systems;
Acoustic Mapping | 3 | | Chemosythenthic communities (subsurface - down several km): hydrate vents, seeps and vent communities | inventory and
characterize, isolated
ridge system, new
biota, larger
geographic context,
physical & chemical
systems | unknown regions, new biota, explore why communities exist, what turns these areas on and off? Significant communities through evolutionary genetics links between regions | Mid-Atlantic Ridge | multi-beam
geophysical
techniques, sampling
techniques, satellite
imaging, towed
vehicles, subs, AUV's
look at new
technologies | 2 | | Knowledge of micro-organisms in the deep sub-bottom | Sea floor Biosphere | Discover new life in sustaining
process, biodiversity, science
benefits, Exobiology interest,
Origin of Life - Evolution Role | Deep water | Deep sampling
technology; Ocean
Drilling Program, | 1 | ### Worksheet B: Identify Approaches to Address Priority Exploration Information Needs Standard Package: Class I/II Vessel w/Acoustic Mapping; Dive Capability (ROV / AUV / Submersible) w/ Imagery / Video & Sampling Equipment (Not Only ROV / AUV / Sub); Multibeam; ADCP's; Precise Position System; Outreach Capability; Education Component | Environments | Description Characterization Bio / Geo / Chem "Funnel" Approach "Funnel" Approach | Feasibility | Technologies Archeological Application; | Available Assets USA Core of Engineers State GOVT's; Academia; Aquariums; Not For Profit Entitles; Science Education; USCG; Navy; Commerical Sea Grant Program | Key Benefits Science: Knowledge of nearshore environment Outreach: Large Public Interest & Impact | |--|---|-------------|--|---|---| | Knowledge of Near Shore Environments Regional Archeological Assessments Physical / Biological shallow water processes Near Fronts Cold Corals | Characterization Bio / Geo / Chem "Funnel" Approach | | Archeological | USA Core of Engineers State GOVT's; Academia; Aquariums; Not For Profit Entities; Science Education; USCG; Navy; Commerical | Science: Knowledge
of nearshore
environment
Outreach: Large
Public Interest & | | Environments Regional Archeological Assessments Physical / Biological shallow water processes Near Fronts Cold Corals | Bio / Geo / Chem "Funnel" Approach | High | | State GOVT's; Academia;
Aquariums; Not For Profit
Entities; Science
Education; USCG; Navy;
Commerical | of nearshore
environment
Outreach: Large
Public Interest & | | Physical / Biological shallow water processes Near Fronts Cold Corals | "Funnel" Approach | High | | Aquariums; Not For Profit
Entitles; Science
Education; USCG; Navy;
Commerical | of nearshore
environment
Outreach: Large
Public Interest & | | processes Near Fronts
Cold Corals | | High | | Soo Cropt Draws | | | Cold Corals | | High | | Con Cront Draway | | | | | High | | Con Cront Draws | | | 1. Silallow Water - Siliall Vessels | | nigit | | | Regulatory: State & | | | "Funnel" Approach | | Magnetic Sensors | Sea Giant Fiogram | Local Governments;
Recreational / Sport
Fisheries;
Commerical
Fisheries | | | | Moderate | ; Bottom mapping &
tion capability; New
otocols; Multi Line
Multi Sensor Arrays | Aquariums (Maritime
Aquarium @ Norwalk;
Mystic, National
Baltimore New England) | Regulatory: State &
Local Governments;
Recreational / Sport
Fisheries; Commerical
Fisheries; Education:
Bio-Technolgies, Bio-
Products | | 2. Autonomous Vehicles | "Funnel" Approach | Moderate | New sampling
protocols; Multi Line
Arrays and Multi | Maritime History
Museums (Mystic
Seaport) | Invasive Species;
Cultural Resources;
Resource | | 3. Aircraft | "Funnel" Approach | Low | Sensor Arrays - LIDAR(?) | Natural History Museums | Management | | | | | * * | (Cape Cod) | | | 4. Field Sensors & Sensor Arrays | "Observation"
Approach | Moderate | Chem / Bio / Geo
Sensor Development | National Estuarine Resear
Carson, Jacques Cousteau | | | | Арргоаст | | Scrisor Development | Smithsonian | -7 | | | | | | Informal science | | | | | | | education entities
(Project O, Chesapeake
Bay Foundation) | | | Discont / Discont | | | | Chahaa Aassaalsaa | | | Phys / Bio Process | | | | States Aquariums;
Educational Institutions;
Non-Profits; Commercial
Ventures | | | Near Fronts Eddys | | | | Ventures | | | Cold & Warm Rings | | | | | | | - | | | | | | | Regional Archeological Assessments | | | | | | | Deep Cold Corals | | | Data Mining,
Conservation
Technologies | | | | "Standard Package" | "Funnel" Approach | High | Magnetic Sensors;
Sub-Bottom
Profilers; Chemical
Sensors; "Tailored"
AUV Designed for
Archeological
Assessment | | Regulatory: Conservation, Fisheries, Policy Development Outreach: Public Interest, Historical Perspective, Education, Science: Habitat Assessment, Biodiversity, Bio- Technologies, Bio- Products Industries: Commercialization, Tourism, Understanding of Distribution | | 2 Fixed Concers Concer Associa 9 Markilla | "Obconvotion" | Moderate | | | | | Fixed Sensors, Sensor Arrays & Mobile Sensors | "Observation"
Approach | woderate | | | | | | P.1., a.z., | | | | | | | | | | | | | Space-Base Remote Sensing | "Targeted" Approach | High / Low | Penetration into
Deeper Water | | , | | | | | Doopo. Water | | | | Knowledge of Gas Hydrate Provinces | | | | Universities | Science: Habitat
Assessment,
Ecosystems; Climate
Change Indicators | | Worksheet B: Identify Approaches to
Needs | Address Priority Exp | loration Information | Enabling | Partners / | | |---|--|----------------------|---|---|--| | Information Need - Approaches | Description | Feasibility | Technologies | Available Assets | Key Benefits | | Knowledge of Impact of Seamounts &
Abrupt Topolography on Ocean Dynamics | | | | Navy, Aquariums; | | | Character of Deep Water Archeological
Sites | | | | Non-Profits; Museums | Industry: Potential
Commercialization,
Tourisms, Salvagers | | Distribution of Large Highly Mobile Biota | | | | States, DARPA, NSF,
ASTO, DOE | | | Submarine Canyons | | | | | Regulatory: Area
Management, Species
Protection Species,
Salvage Policies | | 1. "Standard" Package | "Funnel" Approach | High | Non-Destructive
Investigations,
Robotic
Manipulation; Sub-
Bottom Profiling,
Tools for Sample &
Artifact Recovery,
Interpretation Tools,
Spectral Analysis
Tools; Data Mining;
Laser Line Scan,
Critter Cams | | Outreach: Education,
Public Interest | | 2. Fixed Sensors, Sensor Arrays & Mobile
Sensors | "Obseration"
Approach | Moderate | Remote Tracking
(Aircraft or Space-
Based) | | | | | | | | | | | Expertise in Taxonomy of Marine
Resources | -Education | | National &
International
Standards;
Collections
Management;
Scholarship
Programs | Educational Institutions:
Sea Grant (?); Museums;
Non-Profits | Critical to Establishing
the Baseline of
Existing Knowledge | | | -Career Field - Available Pool of Experts | | Training in
Fieldwork for
Applicable
Disciplines
Sponsoring Existing
Entities with
Expertise
Expert system can
help enable
Graduate Fellowship | | | | | | | Programs Establish Positions (FTE's) for Populations by Existing Professionals Service Academies Establish Accommodating University Polices Establish separate. | | | | | | | Collaborative
Institute | | | # **Great Lakes Workshop** | | | ploration Information | | | | |--|---|--|---|--|------------| | Information Need/Gap | What | Why | Where | Technologies | Interest | | Life in one cubic meter
of water | Seasonal change, species
change, ID & characterize,
transition rates, feeding
rates, all of the rates | Ground truthing, comparison
between different biota,
symbiosis, sensor development
(based on mother nature) | Contrast temperate vs.
tropical, nearshore fresh vs.
salt, contrast different
parameters | AUVs, ROVs, subs, sampling,
neutrally buoyant chemostats,
low impact, low Reynolds #,
new tech | | | Archaeological Survey &
Documentation | Location; documentation,
evolution of marine tech,
19 th century, effects on bio
(good time measurement),
influence of currents, also
look at known wreck sites | Largest density of shipwrecks & submerged cultural resources, need to be protected & managed | Throughout Great Lakes,
deep water, Lake Michigan,
Thunder Bay (already have
resources) Lake Champlain,
Lake Superior, Death's Door,
ports, Keweenaw Peninsula | Interactive (w/ public)
cameras, ROVs, multibeam,
subbottom profilers,
magnetometer, LIDAR, deep
diving cold water diving | 2 | | ID Prehistoric
Submerged
Archaeological Sites | Paleolake lines, ID sites, location, arch documentation | Earliest arch sites in region, better understanding of prehistoric life & tech | Nearshore Karst features,
Straits of Mackinaw I,
submerged river mouths,
paleolake levels | Std, predictive modeling,
side-scan sonar | 2 | | Benthic Communities | ID & characterize
interaction, effects of
exotics, impact of
fisheries, compare w/
oceans, food web | Failing in lower Great Lakes, need to understand why: Superior (untouched), fragile, have ignored benthic fishes in food web | Lake Superior, compare with
Chesapeake Bay and Gulf of
Maine | ROVs, Subs, sampling, AUVs | 3 | | Abyssal Fish (> 50m) | Life history, impact of
invasive species, spawning
(where & how especially in
winter season), character
displacement behavior | Know very little, gene flow
problem, recruitment problem,
invasive species problems,
displacement behavior | Upper Great Lakes, Superior,
Huron, Michigan, eastern
basin of Lake Erie | ROVs, AUVs, time lapse
camera systems planted on
bottom in strategic locations,
Subs | 3 | | Mesoscale Eddies –
frequencies &
importance | Current flow patterns,
eddies, mixing process,
impact on bio, frequency
& importance to
ecosystems productivity,
Chem. props | Need to understand input on
ecosystem; inference of global
warming, correlation productivity,
gene flow, recruitment, impact on
benthic communities | Lake Superior, other Great
Lakes, Yellowstone Lake | Current meters, satellites,
ADCP moorings | 4 | | Linking Climate Forcing
to Lake Response | One effort across all lakes,
temp, current, wind
speed, barometric
pressure, real time
chemical composition | El Nino, global warming,
understanding international
variability, lake circulation
questions, variation over lakes,
better understanding of sediment
record for paleoclimate, transport
of toxics & nutrients, connection
w/ boat people (outreach) | Ten largest lakes in the
world, Lake Michigan (start
where there are problems),
need to be strategically
position, Lake Champlain,
Yellowstone Lake | Buoys, ADCPs, various
sensors, mass spectrometer,
wireless comms, real-time
web access | 4 | | High Resolution Spatial
& Temporal Zooplankton
Measurement | High resolution
zooplankton measurement
over space & time,
classification | Major component of the food web depend on fresh water body | Compare Lake Superior and
southern Lake Michigan, 10
largest lakes in the world,
Yellowstone Lake | Bigger faster vessels
(stationed in Lake Superior),
optical plankton counter,
towed vehicles, AUVs w/
zooplankton counter, in-situ
genetic tech, video image
classification tech | 4 | | Carbon Cycling in Lakes | Carbon cycling, primary
productivity, Carbon
accumulation,
Carbon
consumption, compare
among lakes | Test hypothesis of carbon cycling, each lake is a comparative experiment | Lake Superior, Lake Michigan vs. other lakes | Std, AUVs, primary prod techniques, sediment traps | 5 | | Mapping | Mapping, multibeam | Foundation for exp, small portion
of lake bottom mapped, insight
into deep water circulation &
sedimentation patterns | Lake Superior, Lake
Michigan, all the lakes,
Yellowstone Lake (done this
year), Crater Lake, African
Lakes | Acoustic mapping,
magnetometer, subbottom
profiler, ROVs/Subs | 6 | | North/South Ridges in
Lake Superior | Origin controversy,
distribution of sediment &
benthic communities,
distribution of fish,
influence of bottom
currents | It's a major unknown in Lake
Superior, lake is heterogeneous;
ID these boundaries | Lake Superior (eastern half),
northern Lake Michigan,
eastern Lake Huron, Bering
Sea | Mapping, ROVs, Subs, AUVs, sampling, moorings (ADCP) | 6 | | Karst Features in Lake
Huron (sinkholes) | Spatial coverage, depth,
dimensions, biology,
chemistry, local flow
pattern | Potential source of groundwater
input, fish habitat, prehistoric
culture | Central Lake Huron | Standard, mass spectrometer | 6 | | Ring Depressions (400-
500 m across; 20-30 m
deep) | How they formed,
influence on distribution of
benthic communities,
sediments, contaminants,
local flow patterns, why
not in other lakes | Most widespread feature on floor of North America's largest lake | Lake Superior | Seismic reflection profiling,
ROVs, sediment coring, subs | ϵ | | Artificial Reefs | Recruitment, deterioration
of cultural material,
environmental effect, new
vs. used, lab | In fresh can do well controlled experiments | Artificial reef sites e.g. not too much fishing or commercial activity | Active acoustics, std, video, dive | 7 | | Climate Change on
Timescales of Decades
to Millennium | How climate varies in space & time | Relevance to societal needs (e.g. global warming to inter annual trend prediction), higher resolution than ocean cores | African Rift Lakes, other large lakes of tectonic origin | Drilling, Heave compensation
and dynamic position or deep
water anchoring | 8 | | Worksheet A: I | dentify Ocean Ex | ploration Information | Needs/Gaps | | | | | | | |--|--|--|---|--|----------|--|--|--|--| | Information Need/Gap | What | Why | Where | Technologies | Interest | | | | | | How Animals use Vision
& Light to Orient
Themselves in the Water | Visible communication | Know very little, spin-off potential
for other technologies, dictate
habitat utilization, mating | Deep water, shallows, freshwater vs. saltwater | Standard, photon cameras | 9 | | | | | | Hydrothermal Features
in Lake Systems | Chemistry, microbiology,
nutrient dynamics, | Interesting microbiology, biotech,
evolutionary aspects,
bioremediation, oceanographic
power source for sensors | Crater Lake, Yellowstone
Park lakes, African Lakes
e.g. Tanganyika, Baikal | Standard | 10 | | | | | | Evolutionary Biology | Endemic species, evolution
in isolation, interlake
comparisons, genetics in
large time scales | Fundamentals of evolution of life, island biogeography | Lake Victoria, Lake Malawi,
other African lakes, Lake
Baikal, compare w/ Great
Lakes | Genetic tech, microbiology
techniques, captur e
techniques | 11 | | | | | | Seeps/ Non O2
Environments | Same as above | Same as above (except power source) | North shore of Lake
Superior, bays, near shore,
upper peninsula Superior,
Ashland port (Chsp?),
urban environment | Standard | 12 | | | | | | Issue: How do we share archaeological info w/ the public? | | | | | | | | | | | Issue: AUVS have big potential in lakes | | | | | | | | | | | Issue: More use of cross | discipline | | | | | | | | | #### Worksheet B: Identify Approaches to Address Priority Exploration Information Needs Standard Package: Class IV Vessel w/ Acoustic Mapping; Dive Capability (ROV/AUV/Submersible) w/ Imagery/Video and Sampling Equipment; Precise Positioning System Standard Partners: EPA; GLERL; Ohio State; Grand Valley State University; Canadian Center for Inland Waters; Canadian Dept of Defense & Coast Guard; Great Lakes WATER Institute; U Mich; Large Lakes Observatory; Mich Tech; USGS; USCG; Univ of Toronto; Illinois Natural History Survey, Departments of Natural Resources | worksneet B: | ruentily Approa | ches to Ad | dress Priority Explora Enabling | TION INTORMATIO | needs
I | |--|---|---|--|--|---| | Information Need -
Approaches
Life in 1 m³ of Water | Description | Feasibility | Technologies | Available Assets | Key Benefits | | IR Laser Scan (100 m
res) then Holography
(1 m res), 10 year
effort | IR laser scan on
random samples then
holography - take
random samples | High but very
feasible & low
risk | Holography, acoustic Doppler, Std
pkg, DNS, fluid simulation, IR
laser scan (need low Reynolds#
on machine), microchemical
sensors | John Hopkins, URI | Scientific: new biota; micro level of
how oceans work. Industry: tech
approaches are unlimited.
Outreach: media (e.g. BBC,
Discovery Channel). Regulatory:
better vessel management
program; bioterrorism. | | Funnel | Broad based survey;
then document sites
(impt) | L to H
depending upon
target | STD Pkg, tech divers,
acoustic/laser vision system,
magnetometer, modeling=Lake
level studies | East Carolina University, museums, historical societies, industry, philanthropy, Thunder Bay NMS, Office of Naval Research, Std partners, Smithsonian, academia (Anthro), Native American groups | Scientific: same. Industry: vision system. Outreach: public interest, K-Gray, unlimited, more for prehistoric. Regulatory: management & protection | | Targeted | Existing data then document sites (model storm data) | Same as above | | | | | Benthic & Abyssal | | | | | | | Funnel | Acoustic mapping then
ROV work to isolate
habitats, ground
truthing, sediment,
characterize | High | Acoustic scanner, Std pkg, long term video (obs), obs platform (obs), time lapse cameras | Std Partners, Scripps, industry (esp finances - power plants, fishing, fishing support), boating industry, Sea Grant Extension (outreach & funding), Jason Project | Scientific: knowing mating game, life history, what's limiting recruitment, learning more about diporeia decline. Industry: power plants (big time) (e.g. zebra mussel issue), municipal water plants, carbon cycling. Outreach: "huge", public concern, education need. Regulatory: fisheries management, water quality, contaminants | | Targeted | Use existing data,
groundtruth &
characterize | High | | | | | Moored Observation | Moored in key habitat;
taking measurements | High (higher risk in winter) | | | | | Mobile Observation | Esp in Winter;
ROV/AUV along
transect, moving to find
key conditions then
observe | High (higher risk in winter) | | | | | Eddies/Climate | | | | | | | Forcing/Zooplankton | | | Instrumented moorings, drift
buoys, ADCPs, instrument arrays,
acoustic imaging, STD Pkg,
sediment traps | Std Partners,
University of Toronto,
Oregon State
University, Scripps,
WHOI, | Scientific: same as yesterday plus fish recruitment. Industry: lake level variations greatly impacts commercial shipping directly. Outreach: std pkg, education, inspiring kids, computer literacy related to science vs. games. Regulatory: major impact on lake level and fisheries management, on tourism protection, on water resource management | | Targeted Obs | Choose one location
and measure
eddies/zooplankton,
modeling | High (low risk, comp cost) | | | | | Funnel Obs | 5 places in one of large
lakes; see how lake
responded over two
years and choose
detailed location and
study eddies and
zooplankton, modeling | High (low risk, comp cost) | | | | | cho
ima
cor
ma
Targeted Ch
ima | oose sites, ROV,
aging, sediment
ring, benthic char &
apping | High | Std Pkg, latest ROV tech, moored instrumentation, ADCPs, acoustic fish finders, modeling | Std Partners,
oceanographic
institutions, Canadian
Geological Survey,
industry, Thunder
Bay NMS (Karst) | Scientific: new and not understood, same. Industry Outreach: "very cool", potential glamour child. Regulatory: might need to be protected. | |---
---|------|--|--|--| | Funnel Acc
chc
ima
cor
ma | oose sites, ROV, aging, sediment ring, benthic char & apping toose sites, ROV, aging, coring, | | instrumentation, ADCPs, acoustic | oceanographic
institutions, Canadian
Geological Survey,
industry, Thunder | same. Industry Outreach: "very cool", potential glamour child. Regulatory: might need to be | | Funnel Acc
chc
ima
cor
ma | oose sites, ROV, aging, sediment ring, benthic char & apping toose sites, ROV, aging, coring, | | instrumentation, ADCPs, acoustic | oceanographic
institutions, Canadian
Geological Survey,
industry, Thunder | same. Industry Outreach: "very cool", potential glamour child. Regulatory: might need to be | | ima | aging, coring, | High | | ., | | | | | | | | | | ove
ins
cur | ow conditions change
er course of year,
strument mooring w/
rrent meter arrays,
rious sensors | High | | | | | Artificial Reefs | | | | | | | cor
(ur
cor | mparison
nderwater lab
ncept) | High | Std Pkg, moored sensors & instrumentation, time lapse video, divers (SCUBA), reef design | Std Partners,
industry, DNR,
University of
Waterloo,
Fish&Wildlife Service,
tourism, recreational
divers, University of
Windsor | Scientific: same, how reefs interact w/ environment? Industry: aquaculture, recreational diving, biofouling research, charter boat industry (sport fishing). Outreach very visual. Regulatory: depends on results, should they be doing it or not. | | | | High | | | | | of | ne time examination
new/existing artificial
efs (shipwrecks) | High | | | | | Issues & Notes | | | | | | | ack of precise dynamic pos
Blue Heron (87'), EPA vesse | | | | | | | | | | | Great Lakes | |---|--|---|--|---| | Information Need/Gap | What | Why | Where | Technologies Interest | | Lake Biodiversity; Bio / Geo
chemical processes; origin
of Lakes; Origin of species
(Evolutionary processes) | Community structures & compositions | Undiscovered areas of
bottom; findings new
species of Great Lakes;
Global Pressures on fresh
water resources; Global
issues and local pressures
on fresh water resources; | Bia Kal Lake; African Rift
Lakes, Lake Nicquragua,
Great Bear, Great Slave Lake;
Titikacica Lake; Yellowstone | Pharmaceuticals | | Pelagic Habitat - Ecosystem
Behavior's; Both physical
systems and Benthic
Landscape | Intensify systems in time and space scale; Global loss of biological diversity (loss of taxonomy and systematics skills) Human Technologies to resurrect core competence and Knowledge, people & technological interface needed to continue the skills (greater diversity in program – mainly older / white males) | Questions (make it exciting for everyone to spend 10% on education & outreach needs to be automatic, Information technology as part of funding: Interface of scientist and education, Lead time to ensure relevant content; It won't happen with only a bunch of lone rangers | Biological hot-spots (Benthic
& Pelagic Water Columns) | Sensors & Critter Cams -
PSATS | | Biological Transitions
Zones; Populations in flux;
transportation of organic
and inorganic | Identify organisms
transitions zones; zebra
mussel migrations;
mapping of systems | Global climate changes, fish
species mobility, numbers;
Ranges decline of
organisms; Changes in
Biodiversity | Green Can Reef; Coastal
areas, sea grasses,
mangroves, Florida Bay | Time Lapse; Acoustic imaging of sediment layers; microscopic level | | Integrating in discoveries
with accountability Need,
Basic research with applied
science; Event driven
Storms, Surface and
Benthic storms; | Distribution of nutrients,
biomass & current
influences | Important for costal zones;
Social economic relevance; | Costal Harbor Estuaries | Moorings (Long Term); High frequency surface radar (CODAR), ADCP's; Development of ecological observatories with (beyond normal sensors); New engineering - adaptive sampling instrument (What, When); | | Linkage in the atmospheric forcing function; Marine boundary levels influences; Different processes to study and couple to ocean processes cores and eddy's (rings) | Forcing functions in
atmosphere; Air - Sea
interaction for the
exchange of gas mass
constitutes; | Driver of Ocean changes;
Using the lakes as a closed
system for the
development of models to
build prediction models
(small scale processes in
the water and air) - Easier
to study (logistics) | Translate atmosphere studies techniques in the ocean | New Measurement techniques
(RADAR or Lidar) | | Discover new bio / geo
/chemical pathways
(distribution in the physical
sense) | Identify pathways for compounds | What compounds are influencing the environmental from remote area | Least likely place | Indicator compounds
exploration; measurement
systems; Platforms for
opportunities | | High Resolution mapping of
Great Lakes | Surveys | Discover new features | Large Lakes | Use of UNOLS w/multibeam | | Cultural resources; Pale
Archeology of basin and
human interactions | Identify shipwrecks;
Submerged shorelines | Increases connections to
fresh water and
appreciations of Great
Lakes resources;
Understand dynamics of
region | All the Great Lakes basin
wide; Green Bay; Saginaw
Bay - Deep Water | Better/ Faster multibeam systems | | Things that live between the rocks | Limited sampling of
difficult areas; Deep Reef
systems; out crop reefs | species of Great Lakes | National & International;
Large Lake Areas | Small cameras & fiber optics; sucking mechanisms; Different type of new technologies for sampling techniques for heterogeneous area; Sensors have ability to describe the physical substrate in 3 dimension sense | | Constant monitoring of
Pelagic community | Buoy Networks, or an
upward looking devices
to monitor water column | Unknown interactions in
the water column | Lake Michigan for comparison of Older transects | More Adaptive sensors following events | | Recharge of the all
component parts Lake
systems, Linkages of rivers
estuaries and basin | Use of streams for
spawning; Ecosystems
approach to water
quality; Examine revival
of species, Pollutants | River run-off; linkages
between estuaries and river
fauna, biota complexity
issues unique to the
freshwater Lakes systems
we drink; Land use polices
regulations; water sheds; | efforts Canada other
International entities | Modeling technologies;
Maintenance of USGS gauge
stations; Broad scale
monitoring | | Charactering ecosystems
and other systems; Ice
Dynamics | Surveys sampling;
systematic surveys; Four
dimension; Hydrothermal
systems; long term
sediment records; rates
of change; Seasonal Ice
covered areas | Unknown Balance of
physical and biological
processes; study of ice
dynamics | Deep Basin to shallow water
volumes; Winter in Great
Lakes | Molecular systematics genetics
(method to measure diversity);
Environmental Tracers | | Coupling of Modeling and
Measurements; Sample
strategy/ bio / currents /
Atmosphere models - | Areas of gradients (
where do you put the
resources) at biologically
dynamic areas | Citizen science; Balance of
empirical measurements
with models; helps in
planning with catch per unit | Identification models to lead
to examples (NASA sulfur
model) | Using cruise ships and instruments (Car Ferry towing instruments) Acoustics, sampling water, Image | | Worksheet A: Ide | Norksheet A: Identify Ocean Exploration Information Needs/Gaps - Great Lakes | | | | | | | | |---|--|---|-------|--|----------|--|--|--| |
Information Need/Gap | What | Why | Where | Technologies | Interest | | | | | Models can drive questions researchers to answers | | effort; verifies the conceptual of the measurements that will be made; environmental predictions; tracking of biological changes; providers a way to bring modelers and empirical measure researchers together (pattern recognition); physical modeling drives biology; | | shadow image analysis,
microwave radar on bow of
ship to measure surface
roughness, small scale of
hyperspectral imaging;
Environmental Tracers | | | | | | Information Need -
Approaches | Description | Feasibility | Enabling
Technologies | Partners /
Available Assets | Key Benefits | |--|--|---|--|---|---| | Comparative Lake | | | | | | | Biodiveristy & Complexit
Funnel Approach (Phase 1 c
several lakes) | | Medium | ROVS / AUV / SCUBA /
Submersibles /
Hyperspectrual Remote
Sensors; In-Situ Sensor
(Long Term); Small Vessel
for Estuaries: | National Geographic; USGS;
Country of Lake;
Smithsonian; UNEP, UNGEF
(United Nations);
Developing Nations
Organizations; | Technology;
Fundamental Ecological
Principles to Apply to
Management; Outreach
Human connection to
Water Resources; Public | | Ecological Comparative
Functional Group Approach
compare communities with
similar landscapes between
Lakes; (e.g. Lake Superior:
young v.s. Biakal; Old) | Describe landscape to census; Looking for midwater scatters | Medium | High Frequency Mid-Level
Acoustic Census | National Geographic; USGS;
Country of Lake;
Smithsonian; UNEP, UNGEF
(United Nations);
Developing Nations
Organizations; | Health
New Species; Bio-
Technology;
Fundamental Ecological
Principles to Apply to
Management; Outreach
Human connection to
Water Resources; Public
Health | | Targeted Approach on
Specific Lakes for Specific
things; | - Species Diversity -
looking for new
species; (3 African
Great Lakes); Rapid
Assessment survey;
Collection of long
term Sediment cores;
Geo-thermal Vents
Systems | High | Digital Imagery | National Geographic; USGS;
Country of Lake;
Smithsonian; UNEP, UNGEF
(United Nations);
Developing Nations
Organizations; DOI, USGS
BRG; Museums | New Species; Bio-
Technology;
Fundamental Ecological
Principles to Apply to
Management; Outreach
Human connection to
Water Resources; Public
Health | | Pelagic - Benthic Landso | apes, Habitats & | | | | | | Environments | I mu | | | | | | Focused Applications like the Comparative Funnel Approach with a higher resolution. Details in Ecological Comparative functional Group Approach. [Merge with Interest #6 in winter Discover Bio / Geo / Ch- | Time Series Observations; Investigate during dynamic periods of change "Season of Storms"; Identification of Transport Sampling; Identification of change to community structures across taxonomy; | | Zoo Cam's, Fish Cam's;
Buoy Networks, or an
upward looking devices to
monitor water column;
Dockable AUV's; Recycle Oil
Riggs on Mid-Lake Ridge;
Long Term Observatory | Satellite - National Weather
Service; Gas & Electric
Industry; Coast Guard,
Navy & Army Core of
Engineers; NSF, DOI,
USGS; Insurance
Companies | Understanding Lake
Systems; Risk
Management of Coastal
Resources; Defense
Transportation; State
Defense National
Resources
Management;
Fisheries; | | Interactions | ciii Fatiiways Aii / 3ea | | | | | | Discover Bio / Geo / Chem
Pathways Linking
Atmospheric Forcing
coupling of Ocean
processing | | Identifying boundary
fluxes; Identify
microscale of physical
/ chemical processes;
eddys & fronts; Data
mining & modeling; | Next generation of "FLIP";
Smart Sensors; Swath
vessel; Remote Sensing;
Super Computer | Navy, Energy Industry,
Marine Transportation;
EPA; National Weather
Service; Canadians | Mass balance
understanding in the
Great Lakes;
Contaminant
Transportation; Coastal
Meteorological models
(Ground Truthing);
Marine Weather
Predication; Fisheries | | High Resolution Mappin | | o Archeological of | | | | | basin and human interac | LIONS | | | | | | Observation & Funneled approach Mapping of Great Lakes | Survey of bottom of
Great Lakes - Shallow
water mapping;
Extention of Coastal
Esturiares &
Wetlands;
Understanding
substrates to particle
size;
Near shore fossil
coral reefs (Chicago
and similar
environments); east-
end of Lake Superior;
Mid-Lake Reefs; Mid-
Lake ridge through
Lake Huron; Lake
Champlain | Seismic survey;
Hyperspectral Imaging from
Aircraft; Laser Line Scan | National Oceangraphic
Service; Army Core of
Engineers; USGS; Power
Industry Energy; museums | Discovering where stuff is; Navigations; Fisheries; Cultural Hertiage (Climate history, Lake Levels, drown stream mouths & Inundated cultures); Identifying Exploration Targets; Road maps for research; Inferring Lake processes boundary conditions | |---|---|---|--|---| | Things that Live between the Rocks | | | | | | Targeted Area | Survey of bottom of
Great Lakes - Shallow
water mapping;
Extention of Coastal
Esturiares &
Wetlands;
Understanding
substrates to particle
Size; | optics & Subs, ROV's,
AUV's; Dynamic Positioning
Systems or ROV's / AUV's
capabilities | WHOI, Harbor Branch; NGS | | | Near shore fossil coral reefs (Chicago and similar envir Champlain; Discover origin an maintenance of Reef Dy | | | s; Mid-Lake ridge through Lak | ke Huron; Lake | Crosscutting Technology Rapid Scanning Electronic Microscope (Flow-cam) # South Atlantic Workshop | C 1 | ify Ocean Exploration | IIIIOIIIIIIIIIIIIIIII | . ССАБІ Сирь | | | |---|--|--|--|---|----------| | Group 1 | | | | | | | Information Need/Gap | What | Why | Where | Technologies | Interest |
 2. Mapping paleoshorelines and relict reefs (tend to be fish | Map, ID, characterize, develop
baselines for geology, biology, | Understand sea level and paleoclimate changes, | Reefs, W. Florida shelf, Keys,
shorelines everywhere - shelf | bottom sampling, multibeam,
subs, side scan, seismic tech, | | | nabitats) | water quality | foundation for essential fish habitat | edge, Bahamas | chirp sonar | | | 3. Inner shelf | Surficial geology, bathymetry, | archaeological potential, | Grays Reef, Georgia coast, | SCUBA, multibeam, side-scan, | | | | sediment distribution, biota,
habitat distribution, potential | sand resources,
understanding fish | Florida coast, SE NC coast least
studied, SC coast | chirp, ROV's, seismic, satellite,
Lidar, vibracore, SUB, AUV, | | | | fish habitats, groundwater | habitat, designate | statica, se coast | basic bottom sampling, moored | | | | discharge, relationships | protected areas, hurricane | | arrays, multispectral platforms | | | | between biology and geology,
physical oceanography- water | impact - coastal hazards
such as erosion, rapid | | | | | | mass characteristics, invasive | response to natural or | | | | | | species, harmful algal blooms | man-made c atastrophic | | | | | | | events, paleoshorelines -
coastal evolution | | | | | 0. Explore canyons and holes | map, characterize, ID, | Unknown, unique | Hatteras, Carolina sea trough, | Subs, tech diving, sonar, seismic, | | | | turbidite transport, mineral | isolated habitats, results | Desoto canyon, the Point off | side-scan, multibeam bathymetry | | | | exploration, gas and
groundwater seeps | of unusual geographic
processes - history of | Cape Hatteras, Red Snapper Sink
Hole - off Jacksonville | | | | | 5 | continental margins, how | | | | | | | do they affect | | | | | | | oceanography and
biological assemblages | | | | | 11. Explore shelf break - upper | mapping, characterize, ID, | baseline characterization, | S. Atlantic Bight, oculina banks, | Subs, tech diving, ROV's, | | | slope | intercomparisons | very productive areas,
EFH, upwelling zones, | compare amongCape
Canaveral, Hatteras Slope, | AUV's, moored arrays,
multibeam, side-scan, seismic, | | | | | potential for mass | S.Carolina-Georgia border | chirp | | | | | wasting, tsunami | · · | 1 | | | | | generation,
chemosynthetic | | | | | | | communities, fluid flow, | | | | | | | evolution of continental | | | | | | | margin, mapping low
stand deposits, influence | | | | | | | of Gulf Stream | | | | | 16. The Point | extend baseline info, why is it | unique - meeting of three | Just off Hatteras | Subs, mapping, sediment traps | | | | so productive? map | | | . 11 0 | | | | so productive?, map, | water currents, very productive, huge potential | | | | | 2 Pahama Panka | | water currents, very
productive, huge potential
for natural gas | | | | | 2. Bahama Banks | Explore mechanisms behind | water currents, very
productive, huge potential
for natural gas
Whiting events unknown | Tongue of the ocean (TOTO), | ABLOS (a boat load of stuff), | | | 12. Bahama Banks | Explore mechanisms behind
whiting events, sea level
studies, geology, karst studies, | water currents, very
productive, huge potential
for natural gas
Whiting events unknown
- Calcium Carbonate in
water column, lots of | | | | | 12. Bahama Banks | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, | water currents, very
productive, huge potential
for natural gas
Whiting events unknown
- Calcium Carbonate in
water column, lots of
interesting geology, | Tongue of the ocean (TOTO),
Florida Straits, Exumas (island | ABLOS (a boat load of stuff),
SCUBA, Aquarius and other | | | 2. Bahama Banks | Explore mechanisms behind
whiting events, sea level
studies, geology, karst studies, | water currents, very
productive, huge potential
for natural gas
Whiting events unknown
- Calcium Carbonate in
water column, lots of | Tongue of the ocean (TOTO),
Florida Straits, Exumas (island | ABLOS (a boat load of stuff),
SCUBA, Aquarius and other | | | 12. Bahama Banks | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef | water currents, very
productive, huge potential
for natural gas
Whiting events unknown
- Calcium Carbonate in
water column, lots of
interesting geology,
shipwrecks, goes to great
depths over short
distances - basic | Tongue of the ocean (TOTO),
Florida Straits, Exumas (island | ABLOS (a boat load of stuff),
SCUBA, Aquarius and other | | | 2. Bahama Banks | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef sampling/coring for sea level | water currents, very
productive, huge potential
for natural gas
Whiting events unknown
- Calcium Carbonate in
water column, lots of
interesting geology,
shipwrecks, goes to great
depths over short
distances - basic
exploration, unique, | Tongue of the ocean (TOTO),
Florida Straits, Exumas (island | ABLOS (a boat load of stuff),
SCUBA, Aquarius and other | | | 2. Bahama Banks | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef | water currents, very productive, huge potential for natural gas Whiting events unknown - Calcium Carbonate in water column, lots of interesting geology, shipwrecks, goes to great depths over short distances - basic exploration, unique, educational applications, carbonate bank evolution, | Tongue of the ocean (TOTO),
Florida Straits, Exumas (island | ABLOS (a boat load of stuff),
SCUBA, Aquarius and other | | | 12. Bahama Banks | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef sampling/coring for sea level and paleoclimate studies, | water currents, very productive, huge potential for natural gas Whiting events unknown - Calcium Carbonate in water column, lots of interesting geology, shipwrecks, goes to great depths over short distances - basic exploration, unique, educational applications, carbonate bank evolution, fisheries - provides | Tongue of the ocean (TOTO),
Florida Straits, Exumas (island | ABLOS (a boat load of stuff),
SCUBA, Aquarius and other | | | 12. Bahama Banks | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef sampling/coring for sea level and paleoclimate studies, highly migratory species, | water currents, very productive, huge potential for natural gas Whiting events unknown - Calcium Carbonate in water column, lots of interesting geology, shipwrecks, goes to great depths over short distances - basic exploration, unique, educational applications, carbonate bank evolution, fisheries - provides connectivity to rest of | Tongue of the ocean (TOTO),
Florida Straits, Exumas (island | ABLOS (a boat load of stuff),
SCUBA, Aquarius and other | | | | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef sampling/coring for sea level and paleoclimate studies, highly migratory species, fisheries oceanography | water currents, very productive, huge potential for natural gas Whiting events unknown - Calcium Carbonate in water column, lots of interesting geology, shipwrecks, goes to great depths over short distances - basic exploration, unique, educational applications, carbonate bank evolution, fisheries - provides connectivity to rest of Caribbean, general coral reef health | Tongue of the ocean (TOTO),
Florida Straits, Exumas (island
chain) | ABLOS (a boat load of stuff),
SCUBA, Aquarius and other
habitats, remote sensing | | | 12. Bahama Banks 13. Expanding fisheries (exploitation of new species) | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef sampling/coring for sea level and paleoclimate studies, highly migratory species, fisheries oceanography | water currents, very productive, huge potential for natural gas Whiting events unknown - Calcium Carbonate in water column, lots of interesting geology, shipwrecks, goes to great depths over short distances - basic exploration, unique, educational applications, carbonate bank evolution, fisheries - provides connectivity to rest of Caribbean, general coral reef health Need baseline | Tongue of the ocean (TOTO),
Florida Straits, Exumas (island | ABLOS (a boat load of stuff),
SCUBA, Aquarius and other | | | 13. Expanding fisheries | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef sampling/coring for sea level and paleoclimate studies, highly migratory species, fisheries oceanography | water currents, very productive, huge potential for natural gas Whiting events unknown - Calcium Carbonate in water column, lots of interesting geology, shipwrecks, goes to great depths over short distances - basic exploration, unique, educational applications, carbonate bank evolution, fisheries - provides connectivity to rest of Caribbean, general coral reef health | Tongue of the ocean (TOTO),
Florida Straits, Exumas
(island
chain) | ABLOS (a boat load of stuff),
SCUBA, Aquarius and other
habitats, remote sensing | | | 13. Expanding fisheries exploitation of new species) | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef sampling/coring for sea level and paleoclimate studies, highly migratory species, fisheries oceanography Life history, reproduction, growth rates, all base-line information, education effort | water currents, very productive, huge potential for natural gas Whiting events unknown - Calcium Carbonate in water column, lots of interesting geology, shipwrecks, goes to great depths over short distances - basic exploration, unique, educational applications, carbonate bank evolution, fisheries - provides connectivity to rest of Caribbean, general coral reef health Need baseline information for management of newly exploited species | Tongue of the ocean (TOTO), Florida Straits, Exumas (island chain) Opportunistic, region-wide | ABLOS (a boat load of stuff),
SCUBA, Aquarius and other
habitats, remote sensing | | | 13. Expanding fisheries exploitation of new species) 1. SAFMC (South Atlantic | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef sampling/coring for sea level and paleoclimate studies, highly migratory species, fisheries oceanography Life history, reproduction, growth rates, all base-line information, education effort Map, ID, characterize, develop | water currents, very productive, huge potential for natural gas Whiting events unknown - Calcium Carbonate in water column, lots of interesting geology, shipwrecks, goes to great depths over short distances - basic exploration, unique, educational applications, carbonate bank evolution, fisheries - provides connectivity to rest of Caribbean, general coral reef health Need baseline information for management of newly exploited species Little is known about | Opportunistic, region-wide SAFMC has maps, deeper ones | ABLOS (a boat load of stuff), SCUBA, Aquarius and other habitats, remote sensing baited traps, trawling | | | 13. Expanding fisheries exploitation of new species) 1. SAFMC (South Atlantic Fisheries Management Council) outting areas on map for | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef sampling/coring for sea level and paleoclimate studies, highly migratory species, fisheries oceanography Life history, reproduction, growth rates, all base-line information, education effort Map, ID, characterize, develop baselines for geology, biology, water quality, determining | water currents, very productive, huge potential for natural gas Whiting events unknown - Calcium Carbonate in water column, lots of interesting geology, shipwrecks, goes to great depths over short distances - basic exploration, unique, educational applications, carbonate bank evolution, fisheries - provides connectivity to rest of Caribbean, general coral reef health Need baseline information for management of newly exploited species Little is known about proposed regions , greater | Tongue of the ocean (TOTO), Florida Straits, Exumas (island chain) Opportunistic, region-wide | ABLOS (a boat load of stuff),
SCUBA, Aquarius and other
habitats, remote sensing | | | 13. Expanding fisheries exploitation of new species) 1. SAFMC (South Atlantic Fisheries Management Council) outting areas on map for proposed marine reserve areas - | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef sampling/coring for sea level and paleoclimate studies, highly migratory species, fisheries oceanography Life history, reproduction, growth rates, all base-line information, education effort Map, ID, characterize, develop baselines for geology, biology, water quality, determining potential recreational interests, | water currents, very productive, huge potential for natural gas Whiting events unknown - Calcium Carbonate in water column, lots of interesting geology, shipwrecks, goes to great depths over short distances - basic exploration, unique, educational applications, carbonate bank evolution, fisheries - provides connectivity to rest of Caribbean, general coral reef health Need baseline information for management of newly exploited species Little is known about proposed regions - most are deep regions, greater than 50m; huge | Opportunistic, region-wide SAFMC has maps, deeper ones off N. and S. Carolina, Georgia, | ABLOS (a boat load of stuff), SCUBA, Aquarius and other habitats, remote sensing baited traps, trawling Multibeam, AUV, ROV, subs, tech diving, permanently | | | 13. Expanding fisheries exploitation of new species) 1. SAFMC (South Atlantic Fisheries Management Council) outling areas on map for oroposed marine reserve areas - solitically driven. Need to | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef sampling/coring for sea level and paleoclimate studies, highly migratory species, fisheries oceanography Life history, reproduction, growth rates, all base-line information, education effort Map, ID, characterize, develop baselines for geology, biology, water quality, determining | water currents, very productive, huge potential for natural gas Whiting events unknown - Calcium Carbonate in water column, lots of interesting geology, shipwrecks, goes to great depths over short distances - basic exploration, unique, educational applications, carbonate bank evolution, fisheries - provides connectivity to rest of Caribbean, general coral reef health Need baseline information for management of newly exploited species Little is known about proposed regions - most are deep regions, greater than 50m; huge management implications | Opportunistic, region-wide SAFMC has maps, deeper ones off N. and S. Carolina, Georgia, | ABLOS (a boat load of stuff), SCUBA, Aquarius and other habitats, remote sensing baited traps, trawling Multibeam, AUV, ROV, subs, tech diving, permanently | | | 13. Expanding fisheries exploitation of new species) 1. SAFMC (South Atlantic Fisheries Management Council) outling areas on map for proposed marine reserve areas solitically driven. Need to explore these regions to ID whether these are appropriate | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef sampling/coring for sea level and paleoclimate studies, highly migratory species, fisheries oceanography Life history, reproduction, growth rates, all base-line information, education effort Map, ID, characterize, develop baselines for geology, biology, water quality, determining potential recreational interests, | water currents, very productive, huge potential for natural gas Whiting events unknown - Calcium Carbonate in water column, lots of interesting geology, shipwrecks, goes to great depths over short distances - basic exploration, unique, educational applications, carbonate bank evolution, fisheries - provides connectivity to rest of Caribbean, general coral reef health Need baseline information for management of newly exploited species Little is known about proposed regions - most are deep regions, greater than 50m; huge management implications - could fail since they are based on political | Opportunistic, region-wide SAFMC has maps, deeper ones off N. and S. Carolina, Georgia, | ABLOS (a boat load of stuff), SCUBA, Aquarius and other habitats, remote sensing baited traps, trawling Multibeam, AUV, ROV, subs, tech diving, permanently | | | 13. Expanding fisheries exploitation of new species) 1. SAFMC (South Atlantic Fisheries Management Council) outting areas on map for oroposed marine reserve areas solitically driven. Need to explore these regions to ID whether these are appropriate eserve areas biologically, | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef sampling/coring for sea level and paleoclimate studies, highly migratory species, fisheries oceanography Life history, reproduction, growth rates, all base-line information, education effort Map, ID, characterize, develop baselines for geology, biology, water quality, determining potential recreational interests, | water currents, very productive, huge potential for natural gas Whiting events unknown - Calcium Carbonate in water column, lots of interesting geology, shipwrecks, goes to great depths over short distances - basic exploration, unique, educational applications, carbonate bank evolution, fisheries - provides connectivity to rest of Caribbean, general coral reef health Need baseline information for management of newly exploited species Little is known about proposed regions - most are deep regions, greater than 50m; huge management implications - could fail since they are | Opportunistic, region-wide SAFMC has maps, deeper ones off N. and S. Carolina, Georgia, | ABLOS (a boat load of stuff), SCUBA, Aquarius and other habitats, remote sensing baited traps, trawling Multibeam, AUV, ROV, subs, tech diving, permanently | | | 13. Expanding fisheries (exploitation of new species) 1. SAFMC (South Atlantic Fisheries Management Council) putting areas on map for proposed marine reserve areas politically driven. Need to explore these regions to ID whether these are appropriate reserve areas
biologically, ecologically, etc. | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef sampling/coring for sea level and paleoclimate studies, highly migratory species, fisheries oceanography Life history, reproduction, growth rates, all base-line information, education effort Map, ID, characterize, develop baselines for geology, biology, water quality, determining potential recreational interests, oceanographic parameters | water currents, very productive, huge potential for natural gas Whiting events unknown - Calcium Carbonate in water column, lots of interesting geology, shipwrecks, goes to great depths over short distances - basic exploration, unique, educational applications, carbonate bank evolution, fisheries - provides connectivity to rest of Caribbean, general coral reef health Need baseline information for management of newly exploited species Little is known about proposed regions - most are deep regions, greater than 50m; huge management implications - could fail since they are based on political decisions; | Opportunistic, region-wide SAFMC has maps, deeper ones off N. and S. Carolina, Georgia, Florida, Gulf of Mexico | ABLOS (a boat load of stuff), SCUBA, Aquarius and other habitats, remote sensing baited traps, trawling Multibeam, AUV, ROV, subs, tech diving, permanently mounted instrument arrays | | | 13. Expanding fisheries exploitation of new species) 1. SAFMC (South Atlantic Fisheries Management Council) outling areas on map for oroposed marine reserve areas solitically driven. Need to explore these regions to ID whether these are appropriate esserve areas biologically, | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef sampling/coring for sea level and paleoclimate studies, highly migratory species, fisheries oceanography Life history, reproduction, growth rates, all base-line information, education effort Map, ID, characterize, develop baselines for geology, biology, water quality, determining potential recreational interests, oceanographic parameters Oceanographic parameters | water currents, very productive, huge potential for natural gas Whiting events unknown - Calcium Carbonate in water column, lots of interesting geology, shipwrecks, goes to great depths over short distances - basic exploration, unique, educational applications, carbonate bank evolution, fisheries - provides connectivity to rest of Caribbean, general coral reef health Need baseline information for management of newly exploited species Little is known about proposed regions - most are deep regions, greater than 50m; huge management implications - could fail since they are based on political | Opportunistic, region-wide SAFMC has maps, deeper ones off N. and S. Carolina, Georgia, Florida, Gulf of Mexico Region-wide, spawning locations, paleoshoreline ridges | ABLOS (a boat load of stuff), SCUBA, Aquarius and other habitats, remote sensing baited traps, trawling Multibeam, AUV, ROV, subs, tech diving, permanently mounted instrument arrays Nanotechnology, AUV (WHOI), multibeam, subs, satellite tags on | | | 13. Expanding fisheries exploitation of new species) 1. SAFMC (South Atlantic Fisheries Management Council) outting areas on map for oroposed marine reserve areas - solitically driven. Need to supplore these regions to ID whether these are appropriate esserve areas biologically, etc. 3. Recruitment and spillover | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef sampling/coring for sea level and paleoclimate studies, highly migratory species, fisheries oceanography Life history, reproduction, growth rates, all base-line information, education effort Map, ID, characterize, develop baselines for geology, biology, water quality, determining potential recreational interests, oceanographic parameters Oceanographic parameters Oceanographic parameters/processes, info on spawning, eggs, larvae | water currents, very productive, huge potential for natural gas Whiting events unknown - Calcium Carbonate in water column, lots of interesting geology, shipwrecks, goes to great depths over short distances - basic exploration, unique, educational applications, carbonate bank evolution, fisheries - provides connectivity to rest of Caribbean, general coral reef health Need baseline information for management of newly exploited species Little is known about proposed regions - most are deep regions, greater than 50m; huge management implications - could fail since they are based on political decisions; Little known about | Opportunistic, region-wide SAFMC has maps, deeper ones off N. and S. Carolina, Georgia, Florida, Gulf of Mexico Region-wide, spawning locations, paleoshoreline ridges such as Pulley Ridge, Dry | ABLOS (a boat load of stuff), SCUBA, Aquarius and other habitats, remote sensing baited traps, trawling Multibeam, AUV, ROV, subs, tech diving, permanently mounted instrument arrays Nanotechnology, AUV (WHOI), multibeam, subs, satellite tags on spawning fish, drifters, moored | | | 13. Expanding fisheries exploitation of new species) 1. SAFMC (South Atlantic Fisheries Management Council) outling areas on map for oroposed marine reserve areas solitically driven. Need to explore these regions to ID whether these are appropriate esserve areas biologically, etc. 3. Recruitment and spillover | Explore mechanisms behind whiting events, sea level studies, geology, karst studies, low standing reefs, archaeology - shipwrecks, reef studies, coral bleaching, carbonate production, reef sampling/coring for sea level and paleoclimate studies, highly migratory species, fisheries oceanography Life history, reproduction, growth rates, all base-line information, education effort Map, ID, characterize, develop baselines for geology, biology, water quality, determining potential recreational interests, oceanographic parameters Oceanographic parameters | water currents, very productive, huge potential for natural gas Whiting events unknown - Calcium Carbonate in water column, lots of interesting geology, shipwrecks, goes to great depths over short distances - basic exploration, unique, educational applications, carbonate bank evolution, fisheries - provides connectivity to rest of Caribbean, general coral reef health Need baseline information for management of newly exploited species Little is known about proposed regions - most are deep regions, greater than 50m; huge management implications - could fail since they are based on political decisions; Little known about | Opportunistic, region-wide SAFMC has maps, deeper ones off N. and S. Carolina, Georgia, Florida, Gulf of Mexico Region-wide, spawning locations, paleoshoreline ridges | ABLOS (a boat load of stuff), SCUBA, Aquarius and other habitats, remote sensing baited traps, trawling Multibeam, AUV, ROV, subs, tech diving, permanently mounted instrument arrays Nanotechnology, AUV (WHOI), multibeam, subs, satellite tags on | | | Worksheet A: Identi | ., Seemi Exploration | imomunon i | . ССАБІ Сирь | | | |--|---|---|---|--|------------| | Group 1 | | | | | | | Information Need/Gap 9. Oculina Banks | What is effect of closure? 10 yr limit on no fishing, ID, characterize recruitment and spillover mechanisms, artificial reef impact, comparison with existing baseline studies | Why Only MPA in S. Atlantic Bight where fishing is not allowed, huge oculina coral region, deep reef at 300ft, oculina destroyed by shrimp trawling and scallop dredging, efforts to reseed right now, will coral self recruit?, unique habitat, assessment of restoration techniques, still don't know a lot about it, no research funds provided to demonstrate effectiveness of MPA in restoring corals and fishes, so needs funding | | Technologies subs, ROV's, tech diving, multibeam, moored arrays, side- scan sonar, chirp | Interest 4 | | 4. Exploring Gulf Stream and
Florida Current | ID, characterize, map, habitat
assessment/map, nutrient
cycling, life
history/reproductive
biology/evolution of life
history strategies of fishes | Blake Plateau - Deep,
under Gulf
Stream/Florida Current,
lots of new species found
there, difficult access.
Portalles Terrace - lots of
fish habitat. Unexplored
regions | Fauna of Blake Plateau and
Portalles Terrace and other
significant deep regions in
Florida Straits, Miami Terrace | High current subs, ROV's, side scan, multibeam, seismic tech, ADCP, moored instruments, sediment traps,
neutrally buoyant sed traps, NEW TECH: develop baited fishing gear - automatic release fishing gear such as magnesium links that dissolve - needs to get to bottom quickly and do it's job of fishing or photographing and then pops up to the surface when done | 5 | | 15. Deep sea coral mounts (oculina and lophilia) | map, associated fauna, area,
extent, size of mounds, new
species | bioprospecting, unknown,
new species, MPA
implications (?) | 400-600m depths, Blake Plateau
- Cape Fear to Bahamas | Subs, sonar, sampling tech | 5 | | 14. Shelf-wide water column
oceanographic studies (physical,
biological, chemical) | what causes harmful algal
blooms, circulation, nutrient
distributions, nutrient flux,
mixing, recruitment dynamics,
jellyfish (sea nettles) | fisheries impacts,
economic impacts -
recreation, spawning and
distribution patterns,
baseline data for rapid
response | Region-wide, N. Carolina,
Onslow Bay | SABSOON, data buoys, satellite
imagery, drifters, general
oceanographic sampling - CTD,
ADP, water sampling | 6 | | 17. Seasonality of upwellings and
associated spawning and larval
distribution | map locations of upwellings
and gyres, measure
productivity, sample plankton,
measure vertical flux to sea
floor, physical/chemical water
column characteristics | to understand importance
of upwellings, explain or
predict recruitment to
fisheries, effects on
estuarine systems, life
history | N. of Cape Canaveral, N. of
Charleston Bump - semi-
permanent gyres, also smaller
ones but don't know much about
them - unknown areas | data buoys, moored arrays,
satellite, plankton sampling,
sediment traps, standard
oceanographic sampling - CTD,
ADCP, fluorometry | 6 | | 5. Bioprospecting | Collect samples of marine
organisms, water samples,
sediment samples, collect
DNA from marine organisms | Need for new
pharmaceutical
compounds such as
antibiotics | Any of regions/projects stated above - opportunistic | Subs, ROV's, low tech shipboard
sampling such as trawls and
dredges, genomic tech,
molecular tech | 7 | | 7. Mineral prospecting | manganese nodules,
phosphorites, gas hydrates,
sand resources for beach
nourishment, heavy metals | new energy sources, new
mineral resources | Near-shore regions, Region-
wide, off Hatteras, Charleston
Bump, Blake Plateau, Blake
Ridge | Multibeam, Chirp sonar, seismic,
ROV's, subs, bottom sampling,
corers, grabs, dredges, side scan | 7 | | 6. Use example from sheet on chemosynthetic communities | | New resources, potential energy source | Blake Ridge, Gulf of Mexico | | 8 | | Standard protocol for sampling an
Do's and don'ts of wreck diving - e | | | | | | | Worksheet B: Identify Strategies to Address Priority Exploration Information Needs | | | | | | |--|---|---|--|--|--| | Group 1 | Standard package: class I/II vessel with acoustic mapping (multibeam, sidescan), dive capability(ROV/AUV/Subs) with imagery/video and sampling equip, precise positioning equipment, real-time information transfer (video, email, web), GIS, bottom samplers, grab samplers, water column sampling - rosettes, CTD, plankton sampling, fish sampling | Standard partners: Universities, USGS, state depts of natural resources, NMFS, NOAA sanctuaries, Sea Grant, NOS, MMS, WHOI, HBOI, NASA, NSF, ONR, Space Grant, COSEE, OE, Army Corps of Engineers, aquariums, museums, archaeologists | | | | | Robert Description Featibility Technologies Patterney Available Analysis Key Benefits Robert Approaches Description Featibility Technologies Available Analysis Key Benefits Robert Approaches Robert Rob | Group 1 | | | | | | |--|--|--|-------------|----------------------------|--|--| | many habitats to observe different regions and products to observe different regions and products of the product prod | | Description | Feasibility | | | Key Benefits | | many habitats to observe different regions and products to observe different regions and products of the product prod | Rahama Ranke | | | | | | | seal evel data, sediment traps, water column sampling sater claims ampling and sample collection – potentially e- outside staurine coastal vessel for education and training of near support contrasting amplies and sample collection – potentially e- outside staurine coastal vessel for education and training of near support contrasting amplies of ceaning and sample collection – potentially e- outside staurine coastal vessel for education and training of near support contrasting fisheries sater contrasting proper contrasting fisheries are conducted by Marie Sater contrasting fisheries are conducted by Marie Sater contrasting fisheries are conducted by Marie Sater contrasting fisheries are contrasting of calculation and training of near support of the sate of calculation and training of near support of the sate | Submerged habitats | | medium | column sampling, std pckg, | (Caribbean Marine Research
Center) at Lee Stocking
Island, San Salvador,
education partners, Bahama | knowledge, increased
understanding of
climate/sea level
change, see 'why'
from day 1; outreach
– great opportunities,
public interest;
industry – fishery,
recreation, tourism; | | water column sampling satellite screenes essing lidar tracking satellite remote sensing lidar tracking satellite telemetry high tags critter causs critter behavior high cameras Shelf to Upper Nope observations moored arrays, satellite, airborne, lidar, drifters leaved for opportunities on back yard; industry recentional, fishery, MPA's, regulation of shipwrecks funds a packet, and provided a packet, which is a packet, and the provided array array array array and provided array | | | | | | | | satellite based, remote sensing high lidar gracking satellite lated, remote sensing high tags critter cams critter cams critter cams critter cams critter cams conservations Shelf to Upper Slope observations Shelf to Upper Slope observations Indeed the state of t | targeted approach | | high | | | | | state the content of | observation approach | | high | | | 1 | | Sheff to Upper Slope observations model (similar to LEO), ROW observation satellite, airborne, lidar, drifters model high model (similar to LEO), ROW observation satellite, airborne, lidar, drifters model high model (similar to LEO), ROW observation satellite, airborne, lidar, drifters model high model (similar to LEO), ROW observation satellite, airborne, lidar, drifters model similar to LEO, ROW observation satellite, airborne, lidar,
drifters model similar to LEO, ROW observation satellite, airborne, lidar, drifters model similar to LEO, ROW observation satellite, airborne, lidar, drifters model similar to LEO, ROW observation satellite, airborne, lidar, drifters model similar to LEO, ROW observation satellite, airborne, lidar, drifters model similar to LEO, ROW observation satellite, airborne, lidar, drifters model similar to LEO, ROW observation satellite, airborne, lidar, drifters model similar to LEO, ROW observation satellite, airborne, lidar, drifters model similar to LEO, ROW observation satellite, airborne, lidar, drifters model similar to LEO, ROW observation satellite, airborne, lidar, drifters model similar to LEO, ROW observation satellite, airborne, lidar, | tracking | satellite telemetry | high | | | | | beervations moored arrays, satellite, airborne, lidar, drifters med-high moored (similar to LEO), ROV observation satellite, airborne strip of the personal p | critter cams | critter behavior | high | cameras | | | | beervations moored arrays, satellite, airborne, lidar, drifters med-high moored (similar to LEO), ROV observation satellite, airborne strip of the personal p | Shelf to Unner Slone | | | | | | | expansion of marmap monitoring (fisheries monitoring program funded by NMFS to SC) shelf edge, reefs, hard bottoms, paleoshorelines, spawning locations, sand resources, sediment traps New tech – mobile habitat (withstand i habitat (withstand i) habitat based observation habitat price of education and training of next generation of oceanographers to establish monitoring program of data and sample collection – potentially re-outfit Ferrell for this purpose Expanding Fisheries agrowth rates, reproduction, etc. Standard partners, SAFMC, industry associations such as Coastal Conservation Association and other sport fishing clubs, commercial fishing associations, REEF Environmental Education Association, PADI, NMFS Standard partners, SAFMC, industry association and other sport fishing clubs, commercial fishing association, PADI, NMFS Standard partners, SAFMC, industry association and other sport fishing clubs, commercial fishing association, PADI, NMFS Standard partners, SAFMC, industry association and other sport fishing clubs, commercial fishing association, PADI, NMFS Standard partners, SAFMC, industry partne | observations | | med-high | ROV observation satellite, | | outreach – get
students out to sea –
lots of opportunities,
relevant region – in ou
back yard; industry –
recreational, fishery,
tourism; regulatory –
coastal erosion,
fishery, MPA's,
regulation of | | shelf edge, reefs, hard bottoms, paleoshorelines, spawning locations, sand resources, sediment traps New tech — mobile habitat (withstand; baited autonomous trap; driffers released from sea floor shipboard experience of education and training of next generation of oceanographers to establish monitoring program of data and sample collection — potentially re-outfit Ferrell for this purpose Expanding Fisheries agrowth rates, reproduction, etc. Standard partners, SAFMC, industry associations such as Coastal Conservation Association and other sport fishing clubs, commercial fishing associations, REEF Environmental Education Association, PADI, NMFS Standard partners, SAFMC, industry associations, REEF Environmental Education Association, PADI, NMFS regulatory — sustainable fisheries regu | funnel | expansion of marmap monitoring
(fisheries monitoring program | med-high | | | | | New tech — mobile habitat (withstand; baited autonomous trap; drifters released from sea floor shipboard experience | targeted | shelf edge, reefs, hard bottoms,
paleoshorelines, spawning
locations, sand resources, sediment | | sediment traps, coring | | | | for education and training of next generation of oceanographers to establish monitoring program of data and sample collection — potentially re-outfit Ferrell for this purpose Expanding Fisheries agrowth rates, reproduction, etc. Standard partners, SAFMC, industry associations such as Coastal Conservation Association and other sport fishing clubs, commercial fishing associations, REEF Environmental Education Association, PADI, NMFS fishery dependent ampling fishery independent conducting independent surveys to high standard package, | New tech – mobile
habitat (withstand;
baited autonomous
trap; drifters released
from sea floor | * | medium | habitat, SCUBA | | | | growth rates, reproduction, etc. growth rates, reproduction, etc. growth rates, reproduction, etc. growth rates, reproduction, etc. growth rates, reproduction, etc. growth rates, reproduction, etc. industry associations such as Coastal Conservation Association and other sport fishing clubs, commercial fishing associations, REEF Environmental Education Association, PADI, NMFS getting samples from landings high gishery dependent sampling fishery independent conducting independent surveys to high standard package, | shipboard experience | for education and training of next
generation of oceanographers to
establish monitoring program of
data and sample collection –
potentially re-outfit Ferrell for this | high | | | | | growth rates, reproduction, etc. growth rates, reproduction, etc. growth rates, reproduction, etc. growth rates, reproduction, etc. growth rates, reproduction, etc. growth rates, reproduction, etc. industry associations such as Coastal Conservation Association and other sport fishing clubs, commercial fishing associations, REEF Environmental Education Association, PADI, NMFS getting samples from landings high gishery dependent sampling fishery independent conducting independent surveys to high standard package, | E | handler informed 1 | | | Construction CATACO | 14101 | | sampling sampling conducting independent surveys to high standard package, | | growth rates, reproduction, etc. | | | industry associations such as
Coastal Conservation
Association and other sport
fishing clubs, commercial
fishing associations, REEF
Environmental Education | industry – sustainable
fisheries; outreach –
great educational
opportunities;
regulatory – | | | | | • | | | <u> </u> | | | fishery independent
sampling | | high | | | | | Worksheet B: | Identify Strategies to | Address Priority Ex | ploration Informa | tion Needs | | |----------------------------------|--|---------------------|---|---|--| | Group 1 | , <u>, , , , , , , , , , , , , , , , , , </u> | Ţ | 1 | | | | Information Need &
Approaches | Description | Feasibility | Enabling
Technologies | Partners /
Available Assets | Key Benefits | | MPA's and EFH's | | | standard package | Standard package, Islands in
Stream, OE, ocean tech
industry, NMFS, habitats used
in Monitor project | scientific – determining effectiveness and design of MPA's, see 'why'; outreach – public relations, multidisciplinary, lots of opportunity; industry – lockout tech could be valuable to industry, sustainable fisheries; regulatory – better ability to designate MPA's | | funnel | standard funnel package | high | SCUBA, tech diving, lock-
out diving from subs | | | | Targeted
Tracking | standard targeted
track larvae and fish | high | nanotechnology, satellite | | | | Observations | moored arrays, satellites | high | tags, SCUBA, tech diving | | - | | passive acoustics | passive acoustic tech | high | satellites, time-lapse video
passive acoustic array | | | | Gulf Stream/Florida
Current | | | | standard partners, NWS
(especially moored), recreation
community, fishing, boat
industry | scientific – see 'why',
don't know a lot about
dynamics of Gulf
Stream, better
forecasting; industry –
storm warning and
hurricane prediction,
fishery, recreation,
tourism, diving
community; outreach
– huge
educational/public
relations potential;
regulatory –
sustainable fisheries,
seasonality of fisheries | | funnel | standard funnel | high | standard package, baited
autonomous release traps
(new tech), ADCP | | , | | targeted | | high | | | | | observation | moored current meters at multiple depths, sediment traps | high | AVHRR (sst), SeaWIFS
(ocean color), satellites,
sediment traps | | | | drifter | release drifters regularly from
position on the sea floor and use
satellites to track them | high | neutrally buoyant drifters | | | | Shelf-wide Water | | | | | | | Column Studies | | | | | | | funnel | standard funnel, water column
sampling | high | standard package, moored
arrays, upgrading and
expanding the SABSOON
network, ADCP,
permanently moored data
buoys, drifting sediment
traps (vertex style) | standard partners, CDC | scientific – see 'why';
industry (HAB's
mostly) – tourism,
recreation, fishing,
toxicology,
pharmaceutical,
biowarfare; outreach
(HAB's) – public
information;
regulatory (HAB's) –
fisheries, tourism,
recreation | | targeted | standard targeted, water column sampling | high |] | | | | observation- regular | time-series monitoring and collecting water samples | high |] | | | | observation – event
driven | monitor as event occurs | high | | | | | Prospecting | ctandard funcel | mad high |
rock dredging, sand
collecting tech, standard
package, seismic, sub-
bottom profilers,
bioprospecting tools | biotech, CDC, Standard
partners, local governments | scientific – new information, resource ID, oceanographic processes; industry – tourism, recreation, biotech; regulatory – local governments, coastal zone managers outreach – conservation of resources | | funnel | standard funnel | med-high | J | 1 | I | | Worksheet B: Identify Strategies to Address Priority Exploration Information Needs | | | | | | | | | |--|---|--------------|--------------------------|--------------------------------|--------------|--|--|--| | Group 1 | | | | | | | | | | Information Need &
Approaches | Description | Feasibility | Enabling
Technologies | Partners /
Available Assets | Key Benefits | | | | | targeted | standard targeted, Charleston
Bump (mg), Blake Plateau (gas
hydrates, sand), inner shelf, | high | | | | | | | | Othor modes control | complies and coltage control acresits | ami for doto | | | | | | | | | sampling repository; central repository tech for lock-out diving | ory for data | | | | | | | | | · | Exploration Inf | | • | | | |--|---|---|--|---|-------------|--------| | Group 2 Information Need/Gap | What | Why | Where | Tashnologias | Interest | Item # | | Information Need/Gap
Shelf to slope transition
area; complex habitats -
reefs (outer shelf), deep
coral banks, canyons | What multidiscipline surveys; fisheries; ID community structures; (Assume already have good bathymetric data; characterize content of entire water column (*planned comprehensive surveys); *staged multiyear plan, generate time line | Why impact of cable laying; oil industry; lack of knowledge of biodiversity; pharmaceutical interest (sponge communities) | Hatteras to Texas | Technologies multibeam; ROVs; sampling technologies; HDTV; subs in strong currents; remote sensing of Gulf Stream | Interest 16 | 3 3 | | Primary & secondary
fish production;
understanding
geochemical processes | eddy processes; ID
drivers of production;
lagrangian perspective;
food web | management of living marine resources | Charleston Gyre | satellite imaging of SST, SeaWiFS;
multidisciplinary ship time; drifters | 16 | 4 | | Connectivity of habitats
on shelf and edge of
shelf; trophodynamic
study | extent of spawning
areas; inventory of
habitats and
communities;
connection between
reefs | unknown establishment
of MPAs;
understanding of energy
flow; status/impact
assessment | marine protected areas;
Hatteras to Texas | | 16 | 5 | | Submerged cultural resources – document status of wrecks; recently uncovered by storms, etc. | systematic surveys; ID
targets; consistent
survey of coastline
areas out to EEZ | management tool; can't
protect or investigate
what you don't know;
historical importance;
driven by technology
which has allowed
public to conduct
surveys; prioritize value | Hatteras to Keys; USVI | multibeam | 11 | 1 | | Mapping currents and
eddies and their
connection to vertical
and horizontal
components | ID circulation,
temperature
discontinuities, current
velocities; pH levels | transportation of
organisms; ID
shipwreck status;
effectiveness of no
fishing areas | Gulf Stream to inlets | satellites for SST; drifters; buoys; ADCP; AUVs | 11 | 8 | | Discovery of deep sea
minerals, deep sea biota | surveys – subsurface;
ocean drilling programs | undiscovered; potential
natural resource, cable
laying process | Blake Plateau | | 10 | 9 | | Map dead and living
muscle & clam
communities associated
with seeps | compare with
subsurface; ID survey | ID habitat impacts;
understand the
differences in
communities between
Blake Ridge and Gulf
of Mexico | Blake Ridge | multibeam; coring; sub; gas hydrate
sensors | 10 | 2 | | Post data collection
access to data/info | central coordination of data repository; coordination with P.I., collaboration among P.I.s to share and publish data; funding for working up data; requirements in grant awards – metadata generation, timelines (derived products vs. raw data); data management system process for collected data – soft data, hard data (jars of samples), data products; graduated approach with sufficient funding | public and other
organizations need
access to Ocean
Exploration mission
results; support for
direct outreach
initiatives | anywhere accessible | GIS; distributed data management systems | 6 | 6 | | Automated data and metadata system | bridge / ship info feeds
into automated /
integrated system for
cruise report; station
data | | information systems for
ships | | | 7 | crosscutting themes: metadata clearinghouse as data organization process scientists are at a disadvantage w/ industry when the industries have more data than the science community | Worksheet B: Identify Strategies to Address Priority Exploration Information Needs | | | | | | |--|--|---|--|--|--| | | | "Standard" Partners - USGS, National Park Service, Navy, States, Universities, SHIPO (State Historic Preservation Office), NMFS, NOS, industry, media, educators, Sea Grant, NASA, NESDIS | | | | | Worksheet B: Identify Strategies to Address Priority Exploration Information Needs | | | | | | | | |---|---|---|---|--------------------------------|--|--|--| | Group 2 | | | | | | | | | Information Need &
Approaches | Description | Feasibility | Enabling
Technologies | Partners /
Available Assets | Key Benefits | | | | Shelf to slope transition
shelf), deep coral banks. | area; complex habitats - reefs (outer
canyons | | | | impact assessment | | | | 1 - funnel approach | survey bottom; physical sampling
of water column dynamics | | std pkg 1 minus sub | std partners | historical / educational use;
industry - ID new things;
protection (regulatory);
scientific new knowledge,
better understanding | | | | 2 - targeted | biological survey; sampling
structural data; describing wreck
structure; wood samples from
wrecks; corrosion analysis;
sampling substrates, subsurface
geology | high - std pkg 1; low - std
pkg 2, 3 | std pkg 1, 2, 3; HDTV
cameras; photo mosaic | std partners | scientific; industry; new
species; gas chemistry;
resource management | | | | 3 - observation | site stabilization; covering and
uncovering of wrecks; observe
new species; species
interactions/behavior; habitat
utilization; network of sensors | high - obs system; low -
std pkg 3 | std pkg 3; multiple
cameras/sensors - fiber
optic technology | std partners | ID new species; scientific
new knowledge | | | | Primary & secondary fis
geochemical processes | h production; understanding | | | | | | | | 1 - target on eddies | collect water column, physical
data; use satellite imagery;
collection of mid/bottom
biologics; net and bottom
sampling; connecting
bio/chem/geo technologies and
processes | high | CTD; automated sensors; automated ship: compiling/integrating; management of data; real-time continuous data collection; "conducting cable"; collecting satellite data - SST, SeaWiFS, ARGOS; transmit broadband data | | fisheries management;
unknown species and
processes; impact
assessment; education -
satellite tracking, real-time
video; transmit broadband
data | | | | | on shelf and edge of shelf; | | | | | | | | trophodynamic study 1 - mapping survey | ID connected habitats | high | | std partners | MPA location & defining; | | | | 2 - targeted; coupling
physics and biology | sample; determine source; track
history of fish; follow biologics to
determine behavior; tagging
studies; molecular data analysis | high | spectral technologies;
PSATS/conventional
tagging; chemical tools | su
partiers | functionality of MPAs;
understanding of unknown -
ecological systems;
behaviors | | | | Submerged cultural
resources - document
status of wrecks (ships,
objects, & settlements);
recently uncovered by
storms, etc. | ID of sites; site assessment | | | | | | | | 1 - systematic survey | submersible onsite; look in
historical shipping lanes; sites
know in historical records; sub-
bottom formation ID | high | std pkg 1 - AUVs;
photomosaics; video
imagery; multibeam;
sidescan sonar;
magnetometer; airborne
lidar; integrating sensing
collection system;
real-time video linked to | std partners | cultural resource
management; education;
more effective preservation
methods; prioritize sites for
recreational, archaeological
historical purposes;
designations to national
register; | | | | 2 - targeted on sites | | high | real-time video linked to
shore | | outreach; adding to record
"mankind in the sea"; paled
sea level changes | | | technology crosscutting: couple physical, chemical, biological capabilities in data collection management onboard ship integrate into continuous logging capability hull mounted ADCPs that work